找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; Second International Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb Conference proceedings 200

[復制鏈接]
查看: 52781|回復: 65
樓主
發(fā)表于 2025-3-21 19:30:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Multi-Criterion Optimization
副標題Second International
編輯Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb
視頻videohttp://file.papertrans.cn/318/317979/317979.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Multi-Criterion Optimization; Second International Carlos M. Fonseca,Peter J. Fleming,Kalyanmoy Deb Conference proceedings 200
出版日期Conference proceedings 2003
關鍵詞Adaptation; algorithms; evolution; evolutionary algorithms; genetic algorithms; heuristics; multi-criteria
版次1
doihttps://doi.org/10.1007/3-540-36970-8
isbn_softcover978-3-540-01869-8
isbn_ebook978-3-540-36970-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)




書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)學科排名




書目名稱Evolutionary Multi-Criterion Optimization網絡公開度




書目名稱Evolutionary Multi-Criterion Optimization網絡公開度學科排名




書目名稱Evolutionary Multi-Criterion Optimization被引頻次




書目名稱Evolutionary Multi-Criterion Optimization被引頻次學科排名




書目名稱Evolutionary Multi-Criterion Optimization年度引用




書目名稱Evolutionary Multi-Criterion Optimization年度引用學科排名




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:04:29 | 只看該作者
Social Influence on Sexual Constructs,t and effcient parent and archive update strategies. Based on a comparative study on a number of two and three objective test problems, it is observed that the steady-state MOEA achieves a comparable distribution to the clustered NSGA-II with a much less computational time.
板凳
發(fā)表于 2025-3-22 03:33:39 | 只看該作者
https://doi.org/10.1007/978-3-031-02192-3arbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2- and 3-objective test function.
地板
發(fā)表于 2025-3-22 07:12:18 | 只看該作者
Is Fitness Inheritance Useful for Real-World Applications?well-known test suite of multiple objective optimization problems. These problems have been generated as to constitute a collection of test cases for genetic algorithms. Results show that fitness inheritance can only be applied to convex and continuous problems.
5#
發(fā)表于 2025-3-22 12:38:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:19:58 | 只看該作者
Self-Adaptation for Multi-objective Evolutionary Algorithmsarbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2- and 3-objective test function.
7#
發(fā)表于 2025-3-22 19:33:49 | 只看該作者
8#
發(fā)表于 2025-3-23 00:03:33 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:48 | 只看該作者
https://doi.org/10.1007/978-1-137-12209-4ve grid as the original PAES (Pareto Archived Evolution Strategy). However, the adaptive grid of IS-PAES does not have the serious scalability problems of the original PAES. The proposed constraint-handling approach is validated with several examples taken from the standard literature on evolutionary optimization.
10#
發(fā)表于 2025-3-23 06:40:20 | 只看該作者
Experience first – Marken erlebbar machenonary optimisers, which uses concepts from parallel evolutionary algorithms and nonparametric statistics. The method is evaluated both quantitatively and qualitatively using a rigorous experimental framework. Proof-of-principle results confirm the potential of the adaptive divide-and-conquer strategy.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 20:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
原平市| 布尔津县| 衢州市| 庆阳市| 新民市| 房山区| 黄骅市| 昌邑市| 邓州市| 读书| 日照市| 红河县| 宜良县| 龙口市| 牡丹江市| 固镇县| 唐河县| 科技| 隆子县| 唐河县| 元江| 江安县| 舟山市| 永平县| 塔河县| 宜君县| 普陀区| 连州市| 乌拉特中旗| 县级市| 常德市| 黄大仙区| 郑州市| 织金县| 大城县| 上高县| 辉南县| 永修县| 汨罗市| 阿坝县| 夏邑县|