找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; 4th International Co Shigeru Obayashi,Kalyanmoy Deb,Tadahiko Murata Conference proceedings 2007

[復(fù)制鏈接]
查看: 24874|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:20:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Multi-Criterion Optimization
副標(biāo)題4th International Co
編輯Shigeru Obayashi,Kalyanmoy Deb,Tadahiko Murata
視頻videohttp://file.papertrans.cn/318/317977/317977.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Multi-Criterion Optimization; 4th International Co Shigeru Obayashi,Kalyanmoy Deb,Tadahiko Murata Conference proceedings 2007
描述Multicriterion optimization refers to problems with two or more objectives (normally in conflict with each other) which must be simultaneously satisfied. Evolutionary algorithms have been used for solving multicriterion optimization problems for over two decades, gaining an increasing attention from industry. The 4th International Conference on Evolutionary Multi-criterion Optimization (EMO2007) was held during March 5–8, 2007, in Matsushima/Sendai, Japan. This was the fourth international conference dedicated entirely to this important topic, following the successful EMO 2001, EMO 2003 and EMO 2005 conferences, which were held in Zürich, Switzerland in March 2001, in Faro, Portugal in April 2003, and in Guanajuato, México in March 2005. EMO2007 was hosted by the Institute of Fluid Science, Tohoku University. EMO2007 was co-hosted by the Graduate School of Information Sciences, Tohoku University, the Japan Aerospace Exploration Agency (JAXA), and the Policy Grid Computing Laboratory, Kansai University. The EMO2007 scientific program included four keynote speakers: Hirotaka Nakayama on aspiration level methods, Kay Chen Tan on large and computationally intensive real-world MO optimi
出版日期Conference proceedings 2007
關(guān)鍵詞adaptive search; algorithm design; algorithmics; algorithms; approximation; automata; classification; const
版次1
doihttps://doi.org/10.1007/978-3-540-70928-2
isbn_softcover978-3-540-70927-5
isbn_ebook978-3-540-70928-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)




書目名稱Evolutionary Multi-Criterion Optimization影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度




書目名稱Evolutionary Multi-Criterion Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization被引頻次




書目名稱Evolutionary Multi-Criterion Optimization被引頻次學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization年度引用




書目名稱Evolutionary Multi-Criterion Optimization年度引用學(xué)科排名




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋




書目名稱Evolutionary Multi-Criterion Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:11:30 | 只看該作者
Improving the Efficacy of Multi-objective Evolutionary Algorithms for Real-World Applications (Abstr with multiple objectives. Multi-objective (MO) optimization is a challenging research topic because it involves the simultaneous optimization of several (and normally conflicting) objectives in the Pareto optimal sense. It requires researchers to address many issues that are unique to MO problems,
板凳
發(fā)表于 2025-3-22 01:49:53 | 只看該作者
Decision Making in Evolutionary Optimization (Abstract of Invited Talk)dissociating the optimization process from the selection of the final compromise solution by a decision maker. This has the advantage of removing subjective preference information from the optimization problem formulation, but it also makes the resulting problem computationally more demanding. In or
地板
發(fā)表于 2025-3-22 05:01:29 | 只看該作者
5#
發(fā)表于 2025-3-22 11:48:07 | 只看該作者
Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAshance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter .. Modifying the dominance area of solutions changes their dominance
6#
發(fā)表于 2025-3-22 13:44:47 | 只看該作者
7#
發(fā)表于 2025-3-22 19:15:01 | 只看該作者
Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets to also taking the decision space into account. They indicate that this may be a) necessary to express the users requirements of obtaining distinct solutions (distinct Pareto set parts or subsets) of similar quality (comparable locations on the Pareto front) in real-world applications, and b) a dem
8#
發(fā)表于 2025-3-22 22:11:37 | 只看該作者
9#
發(fā)表于 2025-3-23 01:26:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:10:57 | 只看該作者
Multiobjective Evolutionary Algorithms on Complex Networksdomain, very few spatial models have been proposed. In this paper, we introduce a new multiobjective evolutionary algorithm on complex networks. Here, the individuals in the evolving population are mapped onto the nodes of alternative complex networks – regular, small-world, scale-free and random. A
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳县| 罗江县| 淮南市| 甘孜县| 黎平县| 高邮市| 南京市| 方城县| 沅江市| 中山市| 始兴县| 合川市| 柳州市| 大渡口区| 泰顺县| 山阴县| 油尖旺区| 广西| 四会市| 尼勒克县| 巴青县| 衡东县| 克什克腾旗| 双辽市| 镶黄旗| 茂名市| 安岳县| 丽水市| 桃江县| 丹巴县| 习水县| 札达县| 乌拉特中旗| 巴彦淖尔市| 遂平县| 绵阳市| 思茅市| 中西区| 大关县| 门源| 连山|