找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Equations with Applications in Natural Sciences; Jacek Banasiak,Mustapha Mokhtar-Kharroubi Book 2015 Springer International P

[復(fù)制鏈接]
樓主: 極大
31#
發(fā)表于 2025-3-26 21:40:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:47:06 | 只看該作者
33#
發(fā)表于 2025-3-27 07:13:34 | 只看該作者
Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications,d solution methods will be presented. The notions of a weak solution and entropy will be introduced. This will lead into an investigation of solutions of the so called Riemann problem. For scalar conservation laws, analytical solutions will be derived using characteristics methods. In general numeri
34#
發(fā)表于 2025-3-27 12:38:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:49:06 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:54 | 只看該作者
Stochastic Operators and Semigroups and Their Applications in Physics and Biology, solutions. The results concerning stochastic operators are applied to study ergodicity, mixing and exactness of dynamical systems and an integral operator appearing in the theory of cell cycle. The general results concerning stochastic semigroups are applied to diffusion processes, jump processes a
37#
發(fā)表于 2025-3-27 23:12:24 | 只看該作者
38#
發(fā)表于 2025-3-28 03:57:31 | 只看該作者
39#
發(fā)表于 2025-3-28 08:17:39 | 只看該作者
40#
發(fā)表于 2025-3-28 12:36:09 | 只看該作者
SpringerBriefs in Computer Sciencet, suggest boundary conditions that were not known before. The seminal works of W. Feller, A.D. Wentzell and P. Lévy have led mathematicians and biologists to the general form of such boundary conditions, and to a thorough understanding of their probabilistic and analytical meaning.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆川县| 保康县| 重庆市| 古蔺县| 乐亭县| 民丰县| 莒南县| 于田县| 松原市| 邯郸市| 社旗县| 武鸣县| 开封县| 普兰店市| 满城县| 阿合奇县| 富源县| 千阳县| 荔波县| 时尚| 会理县| 怀远县| 广河县| 汉寿县| 北安市| 双柏县| 云和县| 嘉义县| 焦作市| 全南县| 宁武县| 贵定县| 错那县| 江孜县| 舞阳县| 黄石市| 双牌县| 德昌县| 东山县| 新竹市| 镇赉县|