找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances; Yanan Sun,Gary G. Yen,Mengjie Zhang Book 2023 Th

[復(fù)制鏈接]
查看: 34385|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:02:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances
編輯Yanan Sun,Gary G. Yen,Mengjie Zhang
視頻videohttp://file.papertrans.cn/318/317919/317919.mp4
概述Introduces the fundamentals and up-to-date methods of evolutionary deep neural architecture search.Provides the target readers with sufficient details learning from scratch.Inspires the students to de
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances;  Yanan Sun,Gary G. Yen,Mengjie Zhang Book 2023 Th
描述.This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields..
出版日期Book 2023
關(guān)鍵詞Computational Intelligence; Artificial Intelligence; neural architecture search; evolutionary neural ar
版次1
doihttps://doi.org/10.1007/978-3-031-16868-0
isbn_softcover978-3-031-16870-3
isbn_ebook978-3-031-16868-0Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances影響因子(影響力)




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances網(wǎng)絡(luò)公開度




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances被引頻次




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances被引頻次學(xué)科排名




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances年度引用




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances年度引用學(xué)科排名




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances讀者反饋




書目名稱Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:07:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:30:10 | 只看該作者
Architecture Design for?Plain CNNs unless its performance is analyzed and compared to other architectures. However, measuring the effectiveness of a sole individual consumes a long time, and the situation becomes even more challenging when population-based methods are adopted. To hasten the process of evolution, significantly more c
5#
發(fā)表于 2025-3-22 12:02:43 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:03 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:19:29 | 只看該作者
Internet Protocol Based Architecture Designer EC approaches to develop CNN architectures, as a result, some other significant EC approaches are anticipated to be investigated for evolving CNN architectures without involving humans. PSO is chosen in this chapter because it has the benefits over traditional implementation, reduced computing co
9#
發(fā)表于 2025-3-23 02:27:16 | 只看該作者
Differential Evolution for?Architecture Designng new crossover and mutation operators of DE, as well as an encoding scheme, and a second crossover operator will help to achieve the goal. DECNN will be evaluated on six datasets of various complexity that are widely used and compared to 12 state-of-the-art methods.
10#
發(fā)表于 2025-3-23 06:30:14 | 只看該作者
Architecture Design for?Analyzing Hyperspectral Imagesplay spectral and spatial information. In forestry?[., .], agriculture, and urban planning, HSIs are commonly used. However, there are impacts with the multi-detector utilized to create the HSIs because of the harsh space environment, resulting in the noise of HSIs. The accuracy of consequent work,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗平县| 荥经县| 梅州市| 乐清市| 东丰县| 盐城市| 濮阳市| 加查县| 谢通门县| 温宿县| 和顺县| 西和县| 闽清县| 印江| 蓬莱市| 务川| 兴安盟| 贵定县| 大丰市| 东明县| 灵石县| 六安市| 噶尔县| 永春县| 都兰县| 常山县| 浦北县| 望奎县| 邵阳县| 轮台县| 江山市| 芜湖县| 隆子县| 化州市| 宁武县| 上杭县| 砀山县| 安溪县| 象山县| 喀喇沁旗| 富锦市|