找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Decision Trees in Large-Scale Data Mining; Marek Kretowski Book 2019 Springer Nature Switzerland AG 2019 Evolutionary Computa

[復(fù)制鏈接]
查看: 14089|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:58:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Decision Trees in Large-Scale Data Mining
編輯Marek Kretowski
視頻videohttp://file.papertrans.cn/318/317918/317918.mp4
概述Sums up the authors research conducted over the last 15 years on the evolutionary induction of decision trees.Discusses some basic elements from three domains are discussed, all of which are necessary
叢書名稱Studies in Big Data
圖書封面Titlebook: Evolutionary Decision Trees in Large-Scale Data Mining;  Marek Kretowski Book 2019 Springer Nature Switzerland AG 2019 Evolutionary Computa
描述.This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied. .
出版日期Book 2019
關(guān)鍵詞Evolutionary Computation; Decision Trees; Distributed Computing; Evolutionary Induction of Decision Tre
版次1
doihttps://doi.org/10.1007/978-3-030-21851-5
isbn_softcover978-3-030-21853-9
isbn_ebook978-3-030-21851-5Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Evolutionary Decision Trees in Large-Scale Data Mining影響因子(影響力)




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining網(wǎng)絡(luò)公開度




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining被引頻次




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining被引頻次學(xué)科排名




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining年度引用




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining年度引用學(xué)科排名




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining讀者反饋




書目名稱Evolutionary Decision Trees in Large-Scale Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:41:54 | 只看該作者
2197-6503 ze of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied. .978-3-030-21853-9978-3-030-21851-5Series ISSN 2197-6503 Series E-ISSN 2197-6511
地板
發(fā)表于 2025-3-22 05:02:04 | 只看該作者
5#
發(fā)表于 2025-3-22 12:39:44 | 只看該作者
6#
發(fā)表于 2025-3-22 16:53:32 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:12 | 只看該作者
8#
發(fā)表于 2025-3-23 01:10:19 | 只看該作者
https://doi.org/10.1007/978-3-030-21851-5Evolutionary Computation; Decision Trees; Distributed Computing; Evolutionary Induction of Decision Tre
9#
發(fā)表于 2025-3-23 03:12:14 | 只看該作者
10#
發(fā)表于 2025-3-23 08:27:51 | 只看該作者
Evolutionary ComputationA lot of typical problems that have to be commonly solved in engineering or business can be formulated as optimization problems. The performance of an activity or the value of a decision are characterized by a certain cost function, and here, possible alternatives are considered.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南雄市| 宣武区| 临西县| 威海市| 莱西市| 榆树市| 安多县| 尤溪县| 陕西省| 闽清县| 滁州市| 凌云县| 拜城县| 嘉兴市| 太康县| 张家界市| 涞水县| 沅江市| 姜堰市| 亳州市| 惠来县| 高唐县| 慈利县| 铜山县| 西城区| 吴川市| 鹤壁市| 若尔盖县| 武隆县| 柳江县| 桦川县| 兰州市| 黄平县| 兰溪市| 洪泽县| 佛冈县| 西贡区| 新乡市| 黎平县| 麦盖提县| 吴川市|