找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 5th European Confere Elena Marchiori,Jason H. Moore,Jagath C.

[復制鏈接]
查看: 20994|回復: 66
樓主
發(fā)表于 2025-3-21 19:00:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
副標題5th European Confere
編輯Elena Marchiori,Jason H. Moore,Jagath C. Rajapakse
視頻videohttp://file.papertrans.cn/318/317902/317902.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 5th European Confere Elena Marchiori,Jason H. Moore,Jagath C.
出版日期Conference proceedings 2007
關(guān)鍵詞Microarray; bioinformatics; biology; data mining; evolution; evolutionary computation; genetics; learning; m
版次1
doihttps://doi.org/10.1007/978-3-540-71783-6
isbn_softcover978-3-540-71782-9
isbn_ebook978-3-540-71783-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:28:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:11:00 | 只看該作者
5#
發(fā)表于 2025-3-22 08:56:34 | 只看該作者
asets. Moreover, the optimal classification rules generated are characterized by a strong generalization capability, as shown by their accuracy in predicting the HIV protease cleavable status of peptides in out-of-sample datasets.
6#
發(fā)表于 2025-3-22 16:33:27 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:57 | 只看該作者
Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization,atures. The method makes use of multiobjective techniques to evaluate the performance of profiles, and has a multimodal approach to produce alternative descriptions of same expression target. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the
9#
發(fā)表于 2025-3-23 03:25:37 | 只看該作者
Modeling the Shoot Apical Meristem in ,: Parameter Estimation for Spatial Pattern Formation, such that a particular stable pattern over the SAM cell population emerges. To this end, we propose an evolutionary algorithm-based approach and investigate different ways to improve the efficiency of the search process. Preliminary results are presented for the Brusselator, a well-known reaction-d
10#
發(fā)表于 2025-3-23 08:07:11 | 只看該作者
A Gaussian Evolutionary Method for Predicting Protein-Protein Interaction Sites,ccessful if 50% predicted area is indeed located in protein-protein interface (i.e. the specificity is more than 0.5). We believe that the optimized parameters of our method are useful for analyzing protein-protein interfaces and for interfaces prediction methods and protein-protein docking methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永靖县| 楚雄市| 五河县| 普定县| 喀喇沁旗| 夏河县| 武安市| 北票市| 安丘市| 南丹县| 巩义市| 枣阳市| 西平县| 方山县| 长兴县| 胶南市| 邮箱| 通渭县| 邵武市| 宣城市| 基隆市| 灌阳县| 靖宇县| 阳东县| 沭阳县| 夏河县| 定兴县| 禹州市| 沙河市| 安泽县| 武城县| 玛多县| 平定县| 新绛县| 文成县| 曲沃县| 金秀| 长兴县| 石河子市| 怀安县| 阳西县|