找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 5th European Confere Elena Marchiori,Jason H. Moore,Jagath C.

[復制鏈接]
查看: 20994|回復: 66
樓主
發(fā)表于 2025-3-21 19:00:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
副標題5th European Confere
編輯Elena Marchiori,Jason H. Moore,Jagath C. Rajapakse
視頻videohttp://file.papertrans.cn/318/317902/317902.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 5th European Confere Elena Marchiori,Jason H. Moore,Jagath C.
出版日期Conference proceedings 2007
關(guān)鍵詞Microarray; bioinformatics; biology; data mining; evolution; evolutionary computation; genetics; learning; m
版次1
doihttps://doi.org/10.1007/978-3-540-71783-6
isbn_softcover978-3-540-71782-9
isbn_ebook978-3-540-71783-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:28:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:11:00 | 只看該作者
5#
發(fā)表于 2025-3-22 08:56:34 | 只看該作者
asets. Moreover, the optimal classification rules generated are characterized by a strong generalization capability, as shown by their accuracy in predicting the HIV protease cleavable status of peptides in out-of-sample datasets.
6#
發(fā)表于 2025-3-22 16:33:27 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:20:57 | 只看該作者
Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization,atures. The method makes use of multiobjective techniques to evaluate the performance of profiles, and has a multimodal approach to produce alternative descriptions of same expression target. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the
9#
發(fā)表于 2025-3-23 03:25:37 | 只看該作者
Modeling the Shoot Apical Meristem in ,: Parameter Estimation for Spatial Pattern Formation, such that a particular stable pattern over the SAM cell population emerges. To this end, we propose an evolutionary algorithm-based approach and investigate different ways to improve the efficiency of the search process. Preliminary results are presented for the Brusselator, a well-known reaction-d
10#
發(fā)表于 2025-3-23 08:07:11 | 只看該作者
A Gaussian Evolutionary Method for Predicting Protein-Protein Interaction Sites,ccessful if 50% predicted area is indeed located in protein-protein interface (i.e. the specificity is more than 0.5). We believe that the optimized parameters of our method are useful for analyzing protein-protein interfaces and for interfaces prediction methods and protein-protein docking methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
叙永县| 灵石县| 林西县| 黄石市| 清丰县| 礼泉县| 吉木乃县| 兖州市| 翼城县| 井陉县| 忻城县| 洪泽县| 宁波市| 黑水县| 清水河县| 广昌县| 怀远县| 江山市| 富裕县| 瑞安市| 永宁县| 锦州市| 武乡县| 乐安县| 蓬安县| 凌源市| 磐安县| 包头市| 通河县| 蕲春县| 剑川县| 揭西县| 武平县| 新巴尔虎右旗| 慈利县| 奎屯市| 饶阳县| 南平市| 永顺县| 普洱| 西吉县|