找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 7th European Confere Clara Pizzuti,Marylyn D. Ritchie,Mario G

[復(fù)制鏈接]
查看: 33227|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:29:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
副標(biāo)題7th European Confere
編輯Clara Pizzuti,Marylyn D. Ritchie,Mario Giacobini
視頻videohttp://file.papertrans.cn/318/317900/317900.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 7th European Confere Clara Pizzuti,Marylyn D. Ritchie,Mario G
描述This book constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tübingen, Germany, in April 2009 colocated with the Evo* 2009 events. The 17 revised full papers were carefully reviewed and selected from 44 submissions. EvoBio is the premiere European event for experts in computer science meeting with experts in bioinformatics and the biological sciences, all interested in the interface between evolutionary computation, machine learning, data mining, bioinformatics, and computational biology. Topics addressed by the papers include biomarker discovery, cell simulation and modeling, ecological modeling, uxomics, gene networks, biotechnology, metabolomics, microarray analysis, phylogenetics, protein interactions, proteomics, sequence analysis and alignment, as well as systems biology.
出版日期Conference proceedings 2009
關(guān)鍵詞Microarray; bioinformatics; biology; data mining; learning; machine learning; modeling; sequence analysis; s
版次1
doihttps://doi.org/10.1007/978-3-642-01184-9
isbn_softcover978-3-642-01183-2
isbn_ebook978-3-642-01184-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡(luò)公開度




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用學(xué)科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:58 | 只看該作者
European Union Security and Defenceation rules which is able to predict all GO terms independently of their level. We have compared the proposed method against a baseline method, which consists of training classifiers for each GO terms individually, in five different ion-channel data sets and the results obtained are promising.
板凳
發(fā)表于 2025-3-22 01:30:36 | 只看該作者
地板
發(fā)表于 2025-3-22 04:55:00 | 只看該作者
5#
發(fā)表于 2025-3-22 11:44:07 | 只看該作者
6#
發(fā)表于 2025-3-22 13:38:29 | 只看該作者
A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms,ation rules which is able to predict all GO terms independently of their level. We have compared the proposed method against a baseline method, which consists of training classifiers for each GO terms individually, in five different ion-channel data sets and the results obtained are promising.
7#
發(fā)表于 2025-3-22 17:29:49 | 只看該作者
On the Efficiency of Local Search Methods for the Molecular Docking Problem,d. We also propose an evolutionary algorithm which uses the L-BFGS method as local search. Results demonstrate that this hybrid evolutionary outperforms previous approaches and is better suited to serve as a basis for evolutionary docking methods.
8#
發(fā)表于 2025-3-23 00:48:47 | 只看該作者
9#
發(fā)表于 2025-3-23 05:05:00 | 只看該作者
Refining Genetic Algorithm Based Fuzzy Clustering through Supervised Learning for Unsupervised Cancosed technique is used to cluster three publicly available real life microarray cancer data sets. The performance of the proposed clustering method has been compared to several other microarray clustering algorithms for three publicly available benchmark cancer data sets, viz., leukemia, Colon cancer and Lymphoma data to establish its superiority.
10#
發(fā)表于 2025-3-23 07:52:51 | 只看該作者
https://doi.org/10.1057/9780230281509e a shrinkage estimator of the covariance matrix to infer the GGMs. We show that our approach makes significant and biologically valid predictions. We also show that GGMs are more effective than models that rely on measures of direct interactions between genes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 射阳县| 江陵县| 阿拉善盟| 重庆市| 佳木斯市| 武隆县| 广南县| 民勤县| 繁昌县| 金寨县| 建湖县| 丰县| 文成县| 丹江口市| 凤阳县| 扎兰屯市| 丽江市| 甘泉县| 喀什市| 马山县| 抚松县| 桑日县| 逊克县| 五寨县| 云阳县| 温宿县| 沁水县| 兴山县| 汕头市| 鄂伦春自治旗| 平遥县| 吉安市| 青海省| 静乐县| 丰宁| 赤壁市| 章丘市| 武威市| 九龙县| 安宁市|