找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 11th European Confer Leonardo Vanneschi,William S. Bush,Mario

[復制鏈接]
查看: 18405|回復: 62
樓主
發(fā)表于 2025-3-21 17:40:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
副標題11th European Confer
編輯Leonardo Vanneschi,William S. Bush,Mario Giacobini
視頻videohttp://file.papertrans.cn/318/317899/317899.mp4
概述State-of-the-art research.Fast-track conference proceedings.Unique visibility
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; 11th European Confer Leonardo Vanneschi,William S. Bush,Mario
描述This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoCOP, EvoMUSART and EvoApplications. The 10 revised full papers presented together with 9 poster papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics in the field of biological data analysis and computational biology. They address important problems in biology, from the molecular and genomic dimension to the individual and population level, often drawing inspiration from biological systems in oder to produce solutions to biological problems.
出版日期Conference proceedings 2013
關鍵詞evolutionary algorithms; genetic programming; genome; machine learning; phenotype networks; algorithm ana
版次1
doihttps://doi.org/10.1007/978-3-642-37189-9
isbn_softcover978-3-642-37188-2
isbn_ebook978-3-642-37189-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics影響因子(影響力)學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics網(wǎng)絡公開度學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics被引頻次學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics年度引用學科排名




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋




書目名稱Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:40:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:06 | 只看該作者
地板
發(fā)表于 2025-3-22 08:03:44 | 只看該作者
5#
發(fā)表于 2025-3-22 12:02:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:46 | 只看該作者
Dominique Andolfatto,Dominique Labbéof two time series gene expression data sets showed the usefulness of dbt-Isomap for dimensionality reduction. Moreover, they highlighted the effectiveness of .-norm which appeared as the best alternative to the Euclidean metric for time series gene expression embedding.
7#
發(fā)表于 2025-3-22 17:54:33 | 只看該作者
8#
發(fā)表于 2025-3-22 21:37:53 | 只看該作者
Vasileios Vlachos,Aristidis Bitzenisss features, select a type of classifier and optimize the classifier’s parameters for stress recognition. The classification models used were artificial neural networks (ANNs) and support vector machines (SVMs). Stress recognition rates obtained from an ANN and a SVM without a GA were 68% and 67% re
9#
發(fā)表于 2025-3-23 04:45:54 | 只看該作者
https://doi.org/10.1057/9781137004987ractions produced by a literature mining platform, Pathway Studio. We show that the linear distribution function of expert knowledge is the most appropriate to weigh our scores when expert knowledge from literature mining is used. We find that ACO parameters significantly affect the power of the met
10#
發(fā)表于 2025-3-23 06:36:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
崇左市| 广灵县| 屯昌县| 兴国县| 博野县| 永春县| 济源市| 五华县| 阿克苏市| 长阳| 黔江区| 贵德县| 临澧县| 横峰县| 射阳县| 依兰县| 屯留县| 天水市| 凤庆县| 海宁市| 资兴市| 泸西县| 新河县| 汉源县| 南汇区| 通海县| 怀柔区| 龙山县| 綦江县| 剑川县| 岚皋县| 克拉玛依市| 卓资县| 广平县| 临安市| 页游| 石家庄市| 抚顺县| 太谷县| 新源县| 江达县|