找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation in Combinatorial Optimization; 15th European Confer Gabriela Ochoa,Francisco Chicano Conference proceedings 2015 S

[復(fù)制鏈接]
樓主: Randomized
11#
發(fā)表于 2025-3-23 13:15:28 | 只看該作者
Runtime Analysis of , Evolutionary Algorithm Controlled with Q-learning Using Greedy Exploration St Previously it was shown that it runs in . on . when configured to use the randomized local search algorithm and the Q-learning algorithm with the greedy exploration strategy..We present the runtime analysis for the case when the .-EA algorithm is used. It is shown that the expected running time is at most ..
12#
發(fā)表于 2025-3-23 14:49:39 | 只看該作者
13#
發(fā)表于 2025-3-23 21:10:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:07:34 | 只看該作者
A Variable Neighborhood Search Approach for the Interdependent Lock Scheduling Problem,-world ship trajectories. Notable improvements can be achieved. In addition, the number of (empty) lockages can be significantly reduced when taking them into account during optimization without loosing too much of quality in travel time optimization.
15#
發(fā)表于 2025-3-24 02:26:01 | 只看該作者
Analysis of Solution Quality of a Multiobjective Optimization-Based Evolutionary Algorithm for Knapwo initialisation methods are considered in?the algorithm: local search initialisation and greedy search initialisation. Then the solution quality of the algorithm is analysed in terms of the approximation ratio.
16#
發(fā)表于 2025-3-24 09:31:41 | 只看該作者
True Pareto Fronts for Multi-objective AI Planning Instances, obtained by varying the parameters of the generator. The experimental performances of an actual implementation of the exact solver are demonstrated, and some large instances with remarkable Pareto Front shapes are proposed, that will hopefully become standard benchmarks of the AI planning domain.
17#
發(fā)表于 2025-3-24 12:36:07 | 只看該作者
18#
發(fā)表于 2025-3-24 17:50:02 | 只看該作者
https://doi.org/10.1007/978-3-319-54319-2 well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.
19#
發(fā)表于 2025-3-24 21:22:57 | 只看該作者
Kapitel 7: Hauptergebnisse der Untersuchung,improved variant of GC-AIS is compared with a well known multi-objective evolutionary algorithm NSGA-II on the multi-objective knapsack problem. We show that our improved GC-AIS performs better than NSGA-II on the instances of the knapsack problem taken from [.] inheriting the same benefits of having to set fewer parameters manually.
20#
發(fā)表于 2025-3-25 00:00:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克陶县| 鹰潭市| 开阳县| 沙雅县| 上思县| 湖南省| 绥宁县| 蓬溪县| 双鸭山市| 嘉荫县| 邢台市| 杭州市| 汽车| 达孜县| 烟台市| 香河县| 曲水县| 淮南市| 马龙县| 宿松县| 顺昌县| 都匀市| 延寿县| 施甸县| 台中县| 恩平市| 贡觉县| 裕民县| 天长市| 建瓯市| 古丈县| 仁布县| 罗平县| 鹤壁市| 定西市| 麻栗坡县| 水城县| 平谷区| 巩留县| 长武县| 京山县|