找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Approach to Machine Learning and Deep Neural Networks; Neuro-Evolution and Hitoshi Iba Book 2018 Springer Nature Singapore Pt

[復(fù)制鏈接]
查看: 21695|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:48:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks
副標(biāo)題Neuro-Evolution and
編輯Hitoshi Iba
視頻videohttp://file.papertrans.cn/318/317819/317819.mp4
概述Begins with the essentials of evolutionary algorithms and covers state-of-the-art research methodologies in the field as well as growing research trends.Presents concepts to promote and facilitate eff
圖書封面Titlebook: Evolutionary Approach to Machine Learning and Deep Neural Networks; Neuro-Evolution and  Hitoshi Iba Book 2018 Springer Nature Singapore Pt
描述This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields..Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (T
出版日期Book 2018
關(guān)鍵詞Evolutionary Computation; Evolutionary Computation; Meta-Heuristics; Deep Learning; Machine Learning; Gen
版次1
doihttps://doi.org/10.1007/978-981-13-0200-8
isbn_softcover978-981-13-4358-2
isbn_ebook978-981-13-0200-8
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks影響因子(影響力)




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks網(wǎng)絡(luò)公開度




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks被引頻次




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks被引頻次學(xué)科排名




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks年度引用




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks年度引用學(xué)科排名




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks讀者反饋




書目名稱Evolutionary Approach to Machine Learning and Deep Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:23 | 只看該作者
earch trends.Presents concepts to promote and facilitate effThis book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural ne
板凳
發(fā)表于 2025-3-22 00:49:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:43:02 | 只看該作者
Evolutionary Approach to Gene Regulatory Networks,we explain ERNe (Evolving Reaction Network), which produces a type of genetic network suitable for biochemical systems. ERNe’s effectiveness is shown by several in silico and in vitro experiments, such as oscillator syntheses, XOR problem solving, and inverted pendulum task.
6#
發(fā)表于 2025-3-22 16:39:26 | 只看該作者
Book 2018veral machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools
7#
發(fā)表于 2025-3-22 17:41:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:56 | 只看該作者
Evolutionary Approach to Deep Learning,ork structure and size appropriate to the task. A typical example of neuroevolution is NEAT. NEAT has demonstrated performance superior to that of conventional methods in a large number of problems. Then, several studies on deep neural networks with evolutionary optimization are explained, such as G
9#
發(fā)表于 2025-3-23 03:39:42 | 只看該作者
Machine Learning Approach to Evolutionary Computation,gging, boosting, Gr?bner bases, relevance vector machine, affinity propagation, SVM, and .-nearest neighbors. These are applied to the extension of GP (Genetic Programming), DE (Differential Evolution), and PSO (Particle Swarm Optimization).
10#
發(fā)表于 2025-3-23 09:19:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康保县| 武宣县| 榆树市| 慈溪市| 慈溪市| 瑞昌市| 崇信县| 开远市| 乳源| 平乐县| 郧西县| 龙州县| 亳州市| 北川| 老河口市| 西丰县| 汾西县| 通渭县| 贺州市| 巢湖市| 大同市| 十堰市| 新巴尔虎左旗| 衡南县| 外汇| 神农架林区| 根河市| 新丰县| 武威市| 华安县| 双牌县| 涟源市| 策勒县| 蒲城县| 东乌珠穆沁旗| 高安市| 安阳市| 永丰县| 文成县| 青冈县| 石河子市|