找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Algorithms and Neural Networks; Theory and Applicati Seyedali Mirjalili Book 2019 Springer International Publishing AG, part o

[復(fù)制鏈接]
查看: 37560|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:43:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks
副標(biāo)題Theory and Applicati
編輯Seyedali Mirjalili
視頻videohttp://file.papertrans.cn/318/317811/317811.mp4
概述Introduces beginners to evolutionary algorithms and artificial neural networks.Shows how to train artificial neural networks using evolutionary algorithms.Includes extensive examples of the proposed t
叢書(shū)名稱(chēng)Studies in Computational Intelligence
圖書(shū)封面Titlebook: Evolutionary Algorithms and Neural Networks; Theory and Applicati Seyedali Mirjalili Book 2019 Springer International Publishing AG, part o
描述This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials..
出版日期Book 2019
關(guān)鍵詞Optimization for Real World Problems; Single-objective Optimization Algorithm; Stochastic Optimization
版次1
doihttps://doi.org/10.1007/978-3-319-93025-1
isbn_softcover978-3-030-06572-0
isbn_ebook978-3-319-93025-1Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer International Publishing AG, part of Springer Nature 2019
The information of publication is updating

書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks影響因子(影響力)




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks被引頻次




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks年度引用




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks讀者反饋




書(shū)目名稱(chēng)Evolutionary Algorithms and Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:11 | 只看該作者
Book 2019 algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials..
板凳
發(fā)表于 2025-3-22 04:05:31 | 只看該作者
Biogeography-Based Optimisationlarly to other evolutionary algorithms, BBO has been equipped with crossover and mutations. The main difference between this algorithm and GA is the use of two operators to perform crossover and exploitation. The concepts of mutation is also similar, in which small changes occur in variables of solu
地板
發(fā)表于 2025-3-22 07:25:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:27 | 只看該作者
Evolutionary Deep Neural Networksms are then applied to the datasets for classification. The chapter also considers the comparison and analysis of different evolutionary algorithms for classifying datasets as well. Another contribution is finding the best set of features for the dataset using evolutionary algorithms. The results sh
6#
發(fā)表于 2025-3-22 14:47:31 | 只看該作者
,Erwerbst?tige Frauen als Problemgruppe,lutionary Algorithms are able to efficiently classify the dataset with a very high accuracy and convergence speed. It was also observed that feature selection is important and evolutionary algorithms are able to find the optimal set of features for this problem.
7#
發(fā)表于 2025-3-22 19:25:56 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:41 | 只看該作者
https://doi.org/10.1007/978-3-8350-5527-8tions. However, each solution in BBO faces different mutation rates depending on its fitness, which makes it different from the GA algorithm. In this chapter, the inspiration and mathematical equations of the BBO algorithm are first given. A set of problems is then solved with this algorithm to observe and analyse its performance.
9#
發(fā)表于 2025-3-23 01:39:40 | 只看該作者
10#
發(fā)表于 2025-3-23 09:08:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班玛县| 米林县| 昭通市| 广南县| 磐石市| 皮山县| 吉隆县| 昌江| 盐津县| 揭东县| 霍邱县| 富阳市| 文昌市| 合江县| 璧山县| 会昌县| 曲阳县| 札达县| 通辽市| 易门县| 焦作市| 凌海市| 武威市| 永善县| 靖安县| 汽车| 永善县| 集安市| 淮阳县| 肃宁县| 建瓯市| 随州市| 文山县| 乐亭县| 儋州市| 卢龙县| 紫阳县| 大港区| 辽宁省| 常宁市| 茂名市|