找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution in Computational Intelligence; Proceedings of the 1 Vikrant Bhateja,Xin-She Yang,Ranjita Das Conference proceedings 2023 The Edit

[復(fù)制鏈接]
查看: 39757|回復(fù): 65
樓主
發(fā)表于 2025-3-21 18:55:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolution in Computational Intelligence
副標(biāo)題Proceedings of the 1
編輯Vikrant Bhateja,Xin-She Yang,Ranjita Das
視頻videohttp://file.papertrans.cn/318/317698/317698.mp4
概述Presents research works in intelligent data engineering and analytics.Results of FICTA 2022 held at NIT Mizoram, Aizawl, Mizoram, India.Serves as a reference for researchers and practitioners in acade
叢書名稱Smart Innovation, Systems and Technologies
圖書封面Titlebook: Evolution in Computational Intelligence; Proceedings of the 1 Vikrant Bhateja,Xin-She Yang,Ranjita Das Conference proceedings 2023 The Edit
描述.The book presents the proceedings of the 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2022), held at NIT Mizoram, Aizawl, Mizoram, India during 18 – 19 June 2022. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. These proceedings are divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. This volume is a valuable resource for postgraduate students in various engineering disciplines..
出版日期Conference proceedings 2023
關(guān)鍵詞Computational Intelligence; Artificial Intelligence; Human Computer Interaction; Intelligent Control; In
版次1
doihttps://doi.org/10.1007/978-981-19-7513-4
isbn_softcover978-981-19-7515-8
isbn_ebook978-981-19-7513-4Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Evolution in Computational Intelligence影響因子(影響力)




書目名稱Evolution in Computational Intelligence影響因子(影響力)學(xué)科排名




書目名稱Evolution in Computational Intelligence網(wǎng)絡(luò)公開度




書目名稱Evolution in Computational Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolution in Computational Intelligence被引頻次




書目名稱Evolution in Computational Intelligence被引頻次學(xué)科排名




書目名稱Evolution in Computational Intelligence年度引用




書目名稱Evolution in Computational Intelligence年度引用學(xué)科排名




書目名稱Evolution in Computational Intelligence讀者反饋




書目名稱Evolution in Computational Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:01 | 只看該作者
,Localization and?Classification of?Thoracic Abnormalities from?Chest Radiographs Using Deep Ensembldes two pipelines and an ensemble method. In the first pipeline, YOLOv5 and EfficientNet are used. In second pipeline, the Faster R-CNN model is used. Through the Weighted box fusion method, the fused predictions are created from pipeline results. The final detection results illustrate confidence sc
板凳
發(fā)表于 2025-3-22 02:09:20 | 只看該作者
,Brain Tumor Prediction from?MRI Images Using an?Ensemble Model Based on?EfficientNet-B2, B4, and?Re four types of MRI images, i.e., (i) Inversion Recovery with Fluid Attenuation, (ii) T1-weighted pre-contrast, (iii) T1-weighted post-contrast, and (iv) T2-weighted. Proposed deep ensembled network has demonstrated satisfactory performance and efficiency on the dataset.
地板
發(fā)表于 2025-3-22 07:50:00 | 只看該作者
5#
發(fā)表于 2025-3-22 11:11:05 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:35 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:43 | 只看該作者
,An Approach of?Hate Speech Identification on?Twitter Corpus,s a need for integrated datasets and the hate speech prediction method. This paper describes the study on hate speech and offensive content identification in English language by using the various approaches based on machine learning algorithms (Support vector machine, decision tree, and so on) and N
8#
發(fā)表于 2025-3-22 22:56:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:59:24 | 只看該作者
10#
發(fā)表于 2025-3-23 08:02:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰宁县| 商水县| 稷山县| 定安县| 永春县| 子洲县| 宁夏| 冀州市| 周宁县| 泸定县| 尼玛县| 卓资县| 华阴市| 永善县| 民乐县| 广南县| 杭州市| 客服| 公安县| 峨边| 高州市| 壶关县| 洛隆县| 清新县| 新沂市| 惠来县| 宁津县| 类乌齐县| 中山市| 乌苏市| 海兴县| 肇州县| 蒙城县| 长泰县| 阳江市| 沙洋县| 南城县| 江陵县| 公主岭市| 宣城市| 东丽区|