找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Processes and the Feynman-Kac Formula; Brian Jefferies Book 1996 Springer Science+Business Media Dordrecht 1996 Feynman-Kac form

[復(fù)制鏈接]
樓主: EXTRA
11#
發(fā)表于 2025-3-23 10:19:20 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:26 | 只看該作者
Feynman-Kac Formulae,igroup of continuous linear operators acting on . and that .: . → .(.) is a spectral measure, so that . is a .-additive (.)-process. Recall that this means that for each . ≥ 0, ..: .. → ?(.) is a .-additive set function defined on a .-algebra .. of subsets of Ω containing the collection ..{.} of all
13#
發(fā)表于 2025-3-23 19:05:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:37 | 只看該作者
Some Bounded Evolution Processes,y with transition functions for probabilistic Markov processes. In practice, it is simpler to work with semigroups of linear operators directly, but for the purpose of making the exposition more complete, the technique is outlined in Sections 1 and 2.
16#
發(fā)表于 2025-3-24 08:26:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:55 | 只看該作者
The Radial Dirac Process,l operators .., . = ±1, ±2,..., acting on ..((0, ∞); ?.). The first order part of .. looks similar to the generator of the direct sum of translations in each component of . ∈ ..((0, ∞); ?.). The part of order zero has a 1/.-singularity at . = 0.
18#
發(fā)表于 2025-3-24 14:55:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:16 | 只看該作者
Sebastian Robert,Achim Hendriks measured by a collection of operator valued set functions that may or may not be .-additive. Typically, the set functions are constructed from a semigroup representing the undisturbed evolution of a system, and a spectral measure by which perturbations are implemented.
20#
發(fā)表于 2025-3-25 01:44:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉龙| 湟中县| 赤壁市| 罗甸县| 兴文县| 安新县| 封开县| 甘洛县| 巴东县| 抚顺市| 财经| 梓潼县| 淳化县| 衡东县| 方山县| 安阳市| 额敏县| 宁化县| 滦平县| 连平县| 高雄市| 抚顺县| 溧阳市| 梨树县| 荔波县| 宜良县| 关岭| 秦安县| 贵阳市| 宜川县| 安乡县| 重庆市| 凤冈县| 商丘市| 宁明县| 郯城县| 宜兰市| 绥芬河市| 道孚县| 津市市| 维西|