找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Inclusions and Variation Inequalities for Earth Data Processing III; Long-Time Behavior o Mikhail Z. Zgurovsky,Pavlo O. Kasyanov,

[復(fù)制鏈接]
樓主: 警察在苦笑
21#
發(fā)表于 2025-3-25 03:31:42 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:15 | 只看該作者
23#
發(fā)表于 2025-3-25 12:47:34 | 只看該作者
https://doi.org/10.1007/978-3-662-67836-7cts for investigation. Since then, deep results about existence, properties, structure, and dimension of global attractors for a wide class of dissipative systems have been obtained (see, e.g., [7, 38, 54, 75, 78]). For the application of this classical theory to partial and functional differential
24#
發(fā)表于 2025-3-25 16:59:36 | 只看該作者
https://doi.org/10.1007/978-3-658-17001-1nlinear mathematical models of evolution processes and fields of different nature, in particular, problems deal with the dynamics of solutions of non-stationary problems. Far from complete list of results concern the given direction is in works [4, 5, 7, 9–17, 19].
25#
發(fā)表于 2025-3-25 21:45:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:23:55 | 只看該作者
Eileen C. Reppert,Christian Schulz-Quachis nonautonomous, new and challenging difficulties appear. In this case, if uniqueness of the Cauchy problem holds, then the usual semigroup of operators becomes a two-parameter semigroup or process [38, 39], as we have to take into account the initial and the final time of the solutions.
27#
發(fā)表于 2025-3-26 06:31:33 | 只看該作者
Physica-Schriften zur Betriebswirtschaft is still far to be solved in a satisfactory way. In particular, the existence of a global attractor in the strong topology is an open problem for which only some partial or conditional results are given (see [3, 4, 6, 15, 17, 19, 20, 27, 38]). Concerning the existence of trajectory attractors, some
28#
發(fā)表于 2025-3-26 11:56:02 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:45 | 只看該作者
30#
發(fā)表于 2025-3-26 17:14:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 高密市| 宜川县| 德保县| 新津县| 嘉义市| 库尔勒市| 灵璧县| 康乐县| 濮阳市| 宁化县| 灌南县| 大兴区| 蒙自县| 赣州市| 土默特左旗| 佛坪县| 巢湖市| 旬邑县| 石首市| 阿图什市| 汤原县| 都匀市| 苍溪县| 巨鹿县| 双峰县| 屯门区| 宝山区| 广州市| 洛浦县| 景东| 和田县| 望谟县| 合肥市| 天等县| 石屏县| 吴江市| 榆中县| 应城市| 甘孜| 公安县|