找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Equations of Hyperbolic and Schr?dinger Type; Asymptotics, Estimat Michael Ruzhansky,Mitsuru Sugimoto,Jens Wirth Book 2012 Spring

[復(fù)制鏈接]
樓主: Addiction
11#
發(fā)表于 2025-3-23 12:18:43 | 只看該作者
12#
發(fā)表于 2025-3-23 15:42:08 | 只看該作者
13#
發(fā)表于 2025-3-23 20:56:57 | 只看該作者
Divergence-type Operators: Spectral Theory and Spacetime Estimates,e (LAP) is proved in the framework of weighted Sobolev spaces. It is then used for (i) A general eigenfunction expansion theorem and (ii) Global spacetime estimates for the associated (inhomogeneous) generalized wave equation.
14#
發(fā)表于 2025-3-24 01:41:59 | 只看該作者
Modulus of Continuity and Decay at Infinity in Evolution Equations with Real Characteristics,where a sharp scale of H?lder continuity, with respect to the time variable ., for the a.’s has been established..We show that, for ., a lack of regularity in t can be compensated by a decay as the space variable x .This is not true in the hyperbolic case . = 1 because of the finite speed of propagation.
15#
發(fā)表于 2025-3-24 03:01:04 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:33 | 只看該作者
Entrepreneurship and Historical Explanationnterplay between the wave equation on a Lorentzian manifold and corresponding Riemannian regularizations, and under additional regularity assumptions we derive bounds on the rate of convergence of their commutator. We also show that the restriction to underlying space-like foliations behaves well with respect to these regularizations.
18#
發(fā)表于 2025-3-24 15:47:50 | 只看該作者
Book 2012dvances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions? and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates;
19#
發(fā)表于 2025-3-24 21:58:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 贡觉县| 茂名市| 武邑县| 富锦市| 武功县| 正宁县| 格尔木市| 阿荣旗| 仙游县| 绥中县| 平邑县| 眉山市| 阿城市| 尚义县| 突泉县| 棋牌| 台安县| 灵川县| 石景山区| 灵宝市| 弥勒县| 尚义县| 武功县| 滦南县| 天气| 闽侯县| 丹江口市| 甘孜县| 宜阳县| 伊宁县| 南江县| 平邑县| 彰化县| 上虞市| 和田市| 樟树市| 银川市| 胶州市| 潼关县| 集安市|