找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Equations of Hyperbolic and Schr?dinger Type; Asymptotics, Estimat Michael Ruzhansky,Mitsuru Sugimoto,Jens Wirth Book 2012 Spring

[復(fù)制鏈接]
樓主: Addiction
11#
發(fā)表于 2025-3-23 12:18:43 | 只看該作者
12#
發(fā)表于 2025-3-23 15:42:08 | 只看該作者
13#
發(fā)表于 2025-3-23 20:56:57 | 只看該作者
Divergence-type Operators: Spectral Theory and Spacetime Estimates,e (LAP) is proved in the framework of weighted Sobolev spaces. It is then used for (i) A general eigenfunction expansion theorem and (ii) Global spacetime estimates for the associated (inhomogeneous) generalized wave equation.
14#
發(fā)表于 2025-3-24 01:41:59 | 只看該作者
Modulus of Continuity and Decay at Infinity in Evolution Equations with Real Characteristics,where a sharp scale of H?lder continuity, with respect to the time variable ., for the a.’s has been established..We show that, for ., a lack of regularity in t can be compensated by a decay as the space variable x .This is not true in the hyperbolic case . = 1 because of the finite speed of propagation.
15#
發(fā)表于 2025-3-24 03:01:04 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:33 | 只看該作者
Entrepreneurship and Historical Explanationnterplay between the wave equation on a Lorentzian manifold and corresponding Riemannian regularizations, and under additional regularity assumptions we derive bounds on the rate of convergence of their commutator. We also show that the restriction to underlying space-like foliations behaves well with respect to these regularizations.
18#
發(fā)表于 2025-3-24 15:47:50 | 只看該作者
Book 2012dvances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions? and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates;
19#
發(fā)表于 2025-3-24 21:58:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 南召县| 滦南县| 宝兴县| 突泉县| 田林县| 明水县| 屯门区| 炉霍县| 会昌县| 曲靖市| 荣成市| 中西区| 南京市| 云林县| 逊克县| 仙桃市| 如皋市| 西充县| 汾阳市| 建平县| 绥宁县| 永登县| 来安县| 开平市| 井陉县| 龙海市| 黄山市| 侯马市| 翁牛特旗| 平江县| 新营市| 阳原县| 三门县| 双流县| 隆子县| 皋兰县| 深圳市| 三江| 青铜峡市| 宁乡县|