找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Equations in Scales of Banach Spaces; Oliver Caps Textbook 2002 B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2002 Application

[復(fù)制鏈接]
樓主: Monroe
11#
發(fā)表于 2025-3-23 12:20:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:35 | 只看該作者
Entrepreneurship and Innovation,e of Banach spaces (.). (i.e., . for . ∈ ?. is a Banach space with . ? . for . ≥ .). Here well-posedness roughly means that for sufficiently smooth initial values . there are unique solutions depending continuously on ..
13#
發(fā)表于 2025-3-23 18:51:42 | 只看該作者
International Studies in Entrepreneurship spaces, where .(.) resp., .(., .) are linear operators. Although semilinear evolution equations are special cases of quasilinear ones, we will start this chapter with a discussion of semilinear evolution equations in scales of Banach spaces in section 3.1. We do this for two reasons. On the one han
14#
發(fā)表于 2025-3-24 01:44:06 | 只看該作者
https://doi.org/10.1007/978-3-322-80039-8Applications to quasilinear evolution equations; Quasilinear evolution equations; Tools from functiona
15#
發(fā)表于 2025-3-24 03:37:03 | 只看該作者
16#
發(fā)表于 2025-3-24 09:07:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:33:03 | 只看該作者
https://doi.org/10.1007/978-0-387-72857-5The purpose of this section is to provide briefly some results on .-semigroup theory that we will need in later sections. We assume the reader to be familiar with elementary functional analysis of bounded, linear operators in Banach spaces.
18#
發(fā)表于 2025-3-24 18:02:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:54 | 只看該作者
Ramo Palali?,Léo-Paul‘Dana,Veland RamadaniThe fifth and last chapter is devoted to applications to quasilinear differential and pseudodifferential evolution equations. In section 5.1 we prove several inequalities that are based on Gagliardo-Moser-Nirenberg estimates, i.e., estimates like
20#
發(fā)表于 2025-3-25 02:18:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 长沙市| 漳平市| 蓬莱市| 蓬溪县| 九江市| 库车县| 吉首市| 桓台县| 嘉禾县| 竹山县| 兴海县| 左云县| 乐昌市| 福建省| 赣州市| 怀来县| 南投市| 嘉善县| 运城市| 绥阳县| 安义县| 鄂托克前旗| 吉林省| 永川市| 福建省| 祁连县| 昌乐县| 盐亭县| 河北区| 永安市| 凭祥市| 栾城县| 大田县| 汝州市| 和政县| 丰县| 安化县| 綦江县| 双江| 丰镇市|