找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evo-SETI; Life Evolution Stati Claudio Maccone Book 2020 Springer Nature Switzerland AG 2020 Search for Extraterrestrial Intelligence.Peak-

[復(fù)制鏈接]
樓主: 遮蔽
61#
發(fā)表于 2025-4-1 01:59:40 | 只看該作者
Michael J. Renner,Mark R. Rosenzweigaper we further elaborate on all that particularly with regard to two important topics: (1) The introduction of the general lognormal stochastic process . whose mean value may be an . continuous function of the time, ., rather than just the exponential . typical of the Geometric Brownian Motion (GBM
62#
發(fā)表于 2025-4-1 06:45:26 | 只看該作者
Acquired Immune Deficiency Syndromee call the “Statistical Seager Equation”. Taking the logs of both sides of the Statistical Seager Equation, the latter is converted into an equation of the type log(.)?=?SUM of independent random variables. Let us now consider the possibility that, in the future, the number of physical inputs consid
63#
發(fā)表于 2025-4-1 11:15:53 | 只看該作者
64#
發(fā)表于 2025-4-1 16:20:40 | 只看該作者
65#
發(fā)表于 2025-4-1 19:26:27 | 只看該作者
66#
發(fā)表于 2025-4-1 23:50:11 | 只看該作者
67#
發(fā)表于 2025-4-2 03:03:40 | 只看該作者
OVERCOME Theorem, that is PEAK-LOCUS Theorem, Proven by Maxima,r the GBM exponential mean value, BUT ITS AREA ALWAYS EQUALS ONE because that is just the NORMALIZATION CONDITION of the b-lognormal probability density function. And this MECHANISM means that, while the time keeps increasing, the new alive species (i.e. the newer b-lognormals) are MORE EVOLVED than
68#
發(fā)表于 2025-4-2 10:09:12 | 只看該作者
69#
發(fā)表于 2025-4-2 15:07:42 | 只看該作者
70#
發(fā)表于 2025-4-2 18:17:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磴口县| 凤阳县| 绩溪县| 区。| 莱州市| 丰原市| 固阳县| 丽水市| 寻乌县| 怀柔区| 柞水县| 光山县| 浏阳市| 民和| 朝阳县| 喀什市| 花垣县| 瓦房店市| 扎囊县| 南岸区| 安远县| 石嘴山市| 宁陵县| 宁河县| 卢氏县| 和林格尔县| 徐闻县| 五台县| 三台县| 五家渠市| 房产| 湖北省| 宕昌县| 孟州市| 金塔县| 侯马市| 葫芦岛市| 琼海市| 临洮县| 敦煌市| 车致|