找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evaluating Feynman Integrals; Vladimir A. Smirnov Book 2005 Springer-Verlag Berlin Heidelberg 2005 Alpha and Feynman parameters.Dimensiona

[復(fù)制鏈接]
查看: 10258|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:28:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Evaluating Feynman Integrals
編輯Vladimir A. Smirnov
視頻videohttp://file.papertrans.cn/318/317218/317218.mp4
概述Up-to-date review.Includes supplementary material:
叢書(shū)名稱Springer Tracts in Modern Physics
圖書(shū)封面Titlebook: Evaluating Feynman Integrals;  Vladimir A. Smirnov Book 2005 Springer-Verlag Berlin Heidelberg 2005 Alpha and Feynman parameters.Dimensiona
描述.The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory...Although a great variety of methods for evaluating Feynman integrals has been developed over a span of more than fifty years, this book is a first attempt to summarize them. .Evaluating Feynman Integrals. characterizes the most powerful methods, in particular those used for recent, quite sophisticated calculations, and then illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples..
出版日期Book 2005
關(guān)鍵詞Alpha and Feynman parameters; Dimensional regularization; Feynman integrals; Mellin-Barnes representati
版次1
doihttps://doi.org/10.1007/b95498
isbn_softcover978-3-642-06297-1
isbn_ebook978-3-540-44703-0Series ISSN 0081-3869 Series E-ISSN 1615-0430
issn_series 0081-3869
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書(shū)目名稱Evaluating Feynman Integrals影響因子(影響力)




書(shū)目名稱Evaluating Feynman Integrals影響因子(影響力)學(xué)科排名




書(shū)目名稱Evaluating Feynman Integrals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Evaluating Feynman Integrals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Evaluating Feynman Integrals被引頻次




書(shū)目名稱Evaluating Feynman Integrals被引頻次學(xué)科排名




書(shū)目名稱Evaluating Feynman Integrals年度引用




書(shū)目名稱Evaluating Feynman Integrals年度引用學(xué)科排名




書(shū)目名稱Evaluating Feynman Integrals讀者反饋




書(shū)目名稱Evaluating Feynman Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:10 | 只看該作者
https://doi.org/10.1007/978-3-319-25354-1 in the sense of ?.. ? i0, etc. Moreover, denominators with a linear dependence on . are also understood in this sense, e.g. 2. 2. ?.?i0, although sometimes this i0 dependence is explicitly indicated to avoid misunderstanding.
板凳
發(fā)表于 2025-3-22 03:43:00 | 只看該作者
地板
發(fā)表于 2025-3-22 06:39:22 | 只看該作者
Industrial Policy for Southern Europe, star-triangle uniqueness relations [16, 23, 36] are methods for evaluating massless diagrams. The method of IR rearrangement [38], also in a generalized version based on the ..-operation [14, 34], is a method oriented at renormalization-group calculations.
5#
發(fā)表于 2025-3-22 09:39:29 | 只看該作者
Book 2005 variety of methods for evaluating Feynman integrals has been developed over a span of more than fifty years, this book is a first attempt to summarize them. .Evaluating Feynman Integrals. characterizes the most powerful methods, in particular those used for recent, quite sophisticated calculations,
6#
發(fā)表于 2025-3-22 15:49:42 | 只看該作者
IBP and Reduction to Master Integrals,er integrals. In contrast to the evaluation of the master integrals, which is performed, at a sufficiently high level of complexity, in a Laurent expansion in ?, the reduction problem is solved at ., and the expansion in ? does not provide simplifications here.
7#
發(fā)表于 2025-3-22 20:18:54 | 只看該作者
Evaluation by Differential Equations,tegrals. Thus, this basic method is oriented at the evaluation of the master integrals. Moreover, in contrast to other methods of evaluating individual Feynman integrals, it is assumed within this method that a solution of the reduction problem is already known.
8#
發(fā)表于 2025-3-23 00:39:51 | 只看該作者
0081-3869 ular those used for recent, quite sophisticated calculations, and then illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples..978-3-642-06297-1978-3-540-44703-0Series ISSN 0081-3869 Series E-ISSN 1615-0430
9#
發(fā)表于 2025-3-23 01:36:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:09:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 松潘县| 和龙市| 承德县| 色达县| 措勤县| 祁门县| 连云港市| 舒城县| 澳门| 瑞安市| 铁岭市| 吉木萨尔县| 赣州市| 沙河市| 田阳县| 建始县| 屯留县| 洪泽县| 河池市| 元朗区| 沂水县| 华阴市| 邯郸县| 丰城市| 陇川县| 成安县| 建平县| 含山县| 云龙县| 林甸县| 封开县| 海原县| 灵山县| 玉树县| 康保县| 金乡县| 武功县| 额尔古纳市| 潢川县| 花垣县|