找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: European Congress of Mathematics; Budapest, July 22–26 A. Balog,G. O. H. Katona,D. Sza’sz Conference proceedings 1998 Springer Basel AG 199

[復(fù)制鏈接]
樓主: 烹飪
41#
發(fā)表于 2025-3-28 16:30:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:34 | 只看該作者
43#
發(fā)表于 2025-3-29 00:16:18 | 只看該作者
44#
發(fā)表于 2025-3-29 05:38:18 | 只看該作者
Surprising Geometric Phenomena in High-Dimensional Convexity Theory bodies, and analyze their unexpected asymptotic behavior as the dimension increases to infinity. The underlying methods use different mathematical tools and are useful in a variety of apparently unrelated mathematical areas.
45#
發(fā)表于 2025-3-29 09:46:04 | 只看該作者
Microstructures, Phase Transitions and Geometryaximum or minimum permeability, … ). Some materials can change their internal microstructure and hence their properties in response to external influences. They are sometimes referred to as ‘smart materials’and are of great technological interest.
46#
發(fā)表于 2025-3-29 15:26:28 | 只看該作者
47#
發(fā)表于 2025-3-29 16:34:46 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:31 | 只看該作者
Huygens’ Principle and Integrabilityut it was Jacques Hadamard [1], who was the first to propose in 1923 a rigorous mathematical definition of the phenomenon he called .. This is the meaning of the term “Huygens’ Principle” (or, in short, HP) we use in this paper.
49#
發(fā)表于 2025-3-30 01:23:14 | 只看該作者
https://doi.org/10.1007/978-3-662-33064-7everal areas of mathematics and theoretical computer science. Here we concentrate on applications in discrepancy theory, in combinatorial geometry, in derandomization of geometric algorithms, and in geometric range searching. We believe that the tools described might be useful in other areas of mathematics too.
50#
發(fā)表于 2025-3-30 05:16:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶县| 鄂伦春自治旗| 津市市| 黔西县| 保康县| 玉田县| 通山县| 瓮安县| 涿州市| 三明市| 辉县市| 揭西县| 赣榆县| 宕昌县| 康平县| 大兴区| 碌曲县| 方正县| 韩城市| 上杭县| 沙雅县| 新蔡县| 扎兰屯市| 广州市| 托克托县| 苍梧县| 嘉义市| 鄂托克前旗| 仙游县| 奉节县| 金沙县| 泸定县| 开远市| 龙州县| 罗江县| 昂仁县| 丰都县| 兴化市| 闽侯县| 西乌珠穆沁旗| 阜城县|