找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euro-Par 2012: Parallel Processing Workshops; BDMC, CGWS, HeteroPa Ioannis Caragiannis,Michael Alexander,Josef Weiden Conference proceeding

[復(fù)制鏈接]
樓主: 劉興旺
51#
發(fā)表于 2025-3-30 09:07:20 | 只看該作者
OpenCL - Supporting Distributed Heterogeneous Computing in HPC Clustersl (homogeneous) cluster computing, allowing to leverage the performance of parallel applications. In this paper we introduce .OpenCL, a platform that supports the simple deployment and efficient running of OpenCL-based parallel applications that may span several cluster nodes, expanding the original
52#
發(fā)表于 2025-3-30 12:32:57 | 只看該作者
Mastering Software Variant Explosion for GPU Acceleratorstems hosting accelerators like graphics cards. While algorithm developers have profound knowledge of the application domain, they often lack detailed insight into the underlying hardware of accelerators in order to exploit the provided processing power. Therefore, this paper introduces a rule-based,
53#
發(fā)表于 2025-3-30 19:48:47 | 只看該作者
54#
發(fā)表于 2025-3-30 21:42:08 | 只看該作者
Weighted Block-Asynchronous Iteration on GPU-Accelerated Systemseighting techniques similar to those applied in block-smoothers for multigrid methods. For test matrices taken from the University of Florida Matrix Collection we report the convergence behavior and the total runtime for the different techniques. Analyzing the results, we observe that using weights
55#
發(fā)表于 2025-3-31 04:07:13 | 只看該作者
An Optimized Parallel IDCT on Graphics Processing Unitsing OpenCL. By exploiting that most of the input data of the IDCT for real videos are zero valued coefficients a new compacted data representation is created that allows for several optimizations. Experimental evaluations conducted on different GPUs show average speedups from 1.7× to 7.4× compared t
56#
發(fā)表于 2025-3-31 08:29:19 | 只看該作者
Multi-level Parallelization of Advanced Video Coding on Hybrid CPU+GPU Platformselized on both the CPU and the GPU, and a computationally efficient model is proposed to dynamically distribute the computational load among these processing devices on hybrid platforms. The presented model includes both dependency aware task scheduling and load balancing algorithms. According to th
57#
發(fā)表于 2025-3-31 10:33:51 | 只看該作者
https://doi.org/10.1007/978-3-642-36949-0GPU; big data; cloud computing; grids; high-performance computing; algorithm analysis and problem complex
58#
發(fā)表于 2025-3-31 16:08:59 | 只看該作者
59#
發(fā)表于 2025-3-31 21:05:16 | 只看該作者
,Die hellenistische und r?mische Kunst,ng from adaptive and on-demand fault-tolerance to new fault-tolerance models. However, realistic benchmarks are still missing to analyze and compare the effectiveness of these proposals. To date, most MapReduce fault-tolerance solutions have been evaluated using microbenchmarks in an ad-hoc and over
60#
發(fā)表于 2025-3-31 22:01:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 朔州市| 无为县| 平舆县| 通海县| 龙井市| 高雄市| 中江县| 江达县| 安福县| 华坪县| 扬中市| 麻江县| 翁牛特旗| 安顺市| 阳谷县| 巨鹿县| 永春县| 新乐市| 梁山县| 徐水县| 东山县| 兴化市| 如皋市| 林州市| 马边| 固阳县| 桐乡市| 许昌县| 交口县| 龙泉市| 福州市| 邓州市| 翼城县| 渭南市| 拜城县| 达尔| 云龙县| 和田市| 西充县| 平远县|