找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclid—The Creation of Mathematics; Benno Artmann Book 1999 Springer-Verlag New York, Inc. 1999 Euclid.Euclid‘s elements.Geometry.Math.Vol

[復(fù)制鏈接]
樓主: 分期
41#
發(fā)表于 2025-3-28 16:48:11 | 只看該作者
42#
發(fā)表于 2025-3-28 22:29:34 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:02 | 只看該作者
The Origin of Mathematics 4: Squaring the Circle,Theorem II.14 solves an important problem: Every rectilinear figure can be squared. As usual in mathematics, a problem is solved only to beget another one. The next most prominent figure is the circle. How to square it? Proclus observes in his comment on Prop. I.45, which is the last step before II.14:
44#
發(fā)表于 2025-3-29 04:32:46 | 只看該作者
Euclid Book III: About the Circle,Equal circles are those the diameters of which are equal, or the radii of which are equal.
45#
發(fā)表于 2025-3-29 09:26:29 | 只看該作者
The Origin of Mathematics 5: Problems and Theories,In section C of Book III Euclid presents the prototype of a mathematical theory. He has a clear sense of its architecture. Let us recapitulate the main steps:
46#
發(fā)表于 2025-3-29 11:40:47 | 只看該作者
The Origin of Mathematics 6: The Birth of Rigor,Our historical reconstructions about the pentagon maybe hypothetical. Nevertheless, we can use them as an example for some remarks on rigor in mathematics. What is meant by saying that an argument is rigorous and not just intuitively right?
47#
發(fā)表于 2025-3-29 18:20:17 | 只看該作者
The Origin of Mathematics 7: Polygons After Euclid,In Prop. IV. 16 Euclid constructs a regular 15-gon by superimposing an equilateral triangle on a regular pentagon (Fig. 13.1).
48#
發(fā)表于 2025-3-29 23:40:25 | 只看該作者
49#
發(fā)表于 2025-3-30 00:01:50 | 只看該作者
The Origin of Mathematics 9: Nicomachus and Diophantus,Aside from Euclid, there are two mathematicians from antiquity whose books about arithmetic have survived.
50#
發(fā)表于 2025-3-30 05:14:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩义市| 卓尼县| 博乐市| 丘北县| 湄潭县| 竹北市| 唐山市| 桐城市| 阳春市| 内黄县| 大洼县| 逊克县| 五台县| 百色市| 泰宁县| 台湾省| 桃园市| 英山县| 开鲁县| 肇庆市| 六安市| 岳普湖县| 平舆县| 台北市| 谷城县| 乌鲁木齐县| 香港| 南昌县| 合江县| 本溪市| 台江县| 湘潭市| 深圳市| 青神县| 娄烦县| 淄博市| 洛阳市| 淄博市| 平阳县| 泗洪县| 建湖县|