找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Geometry and its Subgeometries; Edward John Specht,Harold Trainer Jones,Donald H. Book 2015 Springer International Publishing S

[復制鏈接]
樓主: Jurisdiction
51#
發(fā)表于 2025-3-30 08:39:27 | 只看該作者
52#
發(fā)表于 2025-3-30 12:38:09 | 只看該作者
https://doi.org/10.1007/978-3-642-69952-8uclidean/LUB plane (which has been built into an ordered field) real multiples of points are defined and their algebraic properties derived. These properties are used to show the existence of an order-preserving isomorphism between the set of all real numbers and the whole line. The chapter ends wit
53#
發(fā)表于 2025-3-30 18:27:49 | 只看該作者
54#
發(fā)表于 2025-3-30 20:57:45 | 只看該作者
55#
發(fā)表于 2025-3-31 02:12:35 | 只看該作者
56#
發(fā)表于 2025-3-31 08:44:18 | 只看該作者
SpringerBriefs in Earth SciencesA belineation is a bijection of a plane that preserves betweenness. This chapter shows that every belineation on a Pasch plane is a collineation, and explores the interactions between belineations and segments, rays, lines, sides of a line, angles, and triangles.
57#
發(fā)表于 2025-3-31 11:28:30 | 只看該作者
Basics of Learning Devotional Hindu Dance,This chapter defines point rotations and point reflections (about a point .) on a neutral plane, and derives their elementary properties to the extent possible without a parallel axiom. It ends with a classification of isometries of a neutral plane, and proof of the existence of a “square root” of a rotation.
58#
發(fā)表于 2025-3-31 15:22:59 | 只看該作者
59#
發(fā)表于 2025-3-31 19:24:04 | 只看該作者
60#
發(fā)表于 2025-4-1 01:17:06 | 只看該作者
,Schlussbetrachtung – Resümee und Ausblick,This brief chapter shows that on a Euclidean/LUB plane, any non-identity belineation which has more than one fixed point and is not the identity, is an axial affinity; it concludes with a classification of belineations. To prove the main result of this chapter we need Axiom LUB; this explains its placement after the chapter on real numbers.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
稻城县| 德庆县| 桦南县| 昭平县| 定结县| 磐安县| 尉犁县| 绥棱县| 禹州市| 盐城市| 永川市| 孟州市| 来宾市| 绥阳县| 黑山县| 南京市| 丹阳市| 玉田县| 太仆寺旗| 从化市| 津南区| 锦屏县| 东兴市| 金坛市| 咸阳市| 楚雄市| 望江县| 铜山县| 泸州市| 万安县| 大余县| 鄂托克旗| 两当县| 仁化县| 巩义市| 平凉市| 汾西县| 中牟县| 云梦县| 长岛县| 阿拉尔市|