找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Distance Matrices and Their Applications in Rigidity Theory; Abdo Y. Alfakih Book 2018 Springer Nature Switzerland AG 2018 Eucli

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 13:14:41 | 只看該作者
https://doi.org/10.1007/978-0-387-71167-6roblem reduces to a purely combinatorial one depending only on graph .. The literature on the theory of local and infinitesimal rigidities is vast [., ., ., ., .]. However, in this chapter, we confine ourselves to discussing only the basic results and the results pertaining to EDMs.
12#
發(fā)表于 2025-3-23 13:51:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:09:37 | 只看該作者
The Eigenvalues of EDMs,lated to eigenvalues such as: a method for constructing nonisomorphic cospectral EDMs; the connection between EDMs, graphs, and combinatorial designs; EDMs with exactly two or three distinct eigenvalues and the EDM inverse eigenvalue problem.
14#
發(fā)表于 2025-3-24 01:22:20 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:28 | 只看該作者
16#
發(fā)表于 2025-3-24 09:38:48 | 只看該作者
Euclidean Distance Matrices and Their Applications in Rigidity Theory978-3-319-97846-8
17#
發(fā)表于 2025-3-24 11:06:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:43:53 | 只看該作者
19#
發(fā)表于 2025-3-24 23:00:41 | 只看該作者
Stephen J. Paddison,Keith S. Promislowf the most pertinent concepts and results in the theories of vector spaces, matrices, convexity, and graphs. Proofs of several of these results are included to make this chapter as self-contained as possible.
20#
發(fā)表于 2025-3-25 01:16:00 | 只看該作者
Jinsong Han,Wei Xi,Kun Zhao,Zhiping Jiang EDMs. The chapter also discusses methods to construct new EDMs from old ones, and presents some EDM necessary and sufficient inequalities. It also provides a discussion of the Cayley–Menger matrix and Schoenberg Transformations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仁怀市| 上犹县| 淮南市| 成都市| 黄大仙区| 陆丰市| 申扎县| 海晏县| 秦安县| 灵川县| 武宁县| 珲春市| 宣恩县| 偏关县| 子长县| 长汀县| 宕昌县| 鹤壁市| 马关县| 大石桥市| 崇文区| 钦州市| 密山市| 安宁市| 屯留县| 栖霞市| 汶川县| 平山县| 肇庆市| 托克逊县| 五莲县| 南岸区| 尉犁县| 正定县| 贞丰县| 岢岚县| 台湾省| 社旗县| 兴山县| 岳阳市| 泾川县|