找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Design Theory; Masanori Sawa,Masatake Hirao,Sanpei Kageyama Book 2019 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
查看: 18996|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:07:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Euclidean Design Theory
編輯Masanori Sawa,Masatake Hirao,Sanpei Kageyama
視頻videohttp://file.papertrans.cn/317/316420/316420.mp4
概述Covers the constructions of optimal experimental designs comprehensively.Provides a novel framework for understanding optimal designs, based on the theory of cubature formulas in analysis and spherica
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Euclidean Design Theory;  Masanori Sawa,Masatake Hirao,Sanpei Kageyama Book 2019 The Author(s), under exclusive license to Springer Nature
描述.This book is the modern first treatment of experimental designs, providing a comprehensive introduction to the interrelationship between the theory of optimal designs and the theory of cubature formulas in numerical analysis. It also offers original new ideas for constructing optimal designs.. . The book opens with some basics on reproducing kernels, and builds up to more advanced topics, including bounds for the number of cubature formula points, equivalence theorems for statistical optimalities, and the Sobolev Theorem for the cubature formula. It concludes with a functional analytic generalization of the above classical results.. . Although it is intended for readers who are interested in recent advances in the construction theory of optimal experimental designs, the book is also useful for researchers seeking rich interactions between optimal experimental designs and various mathematical subjects such as spherical designs in combinatorics and cubature formulas in numerical analysis, both closely related to embeddings of classical finite-dimensional Banach spaces in functional analysis and Hilbert identities in elementary number theory. Moreover, it provides a novel communicati
出版日期Book 2019
關(guān)鍵詞Cubature Formula; Spherical Design; Euclidean Design; Optimal Design; Reproducing Kernel
版次1
doihttps://doi.org/10.1007/978-981-13-8075-4
isbn_softcover978-981-13-8074-7
isbn_ebook978-981-13-8075-4Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Euclidean Design Theory影響因子(影響力)




書目名稱Euclidean Design Theory影響因子(影響力)學(xué)科排名




書目名稱Euclidean Design Theory網(wǎng)絡(luò)公開度




書目名稱Euclidean Design Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Euclidean Design Theory被引頻次




書目名稱Euclidean Design Theory被引頻次學(xué)科排名




書目名稱Euclidean Design Theory年度引用




書目名稱Euclidean Design Theory年度引用學(xué)科排名




書目名稱Euclidean Design Theory讀者反饋




書目名稱Euclidean Design Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:25:55 | 只看該作者
Euclidean Design Theory,cular has led to the development of the statistical quality control, is one of the most important areas in applied statistics. On the other hand, the theory of experimental design has been pursued mainly by quality engineers and statisticians, which is, however, still in its early stages from a view
地板
發(fā)表于 2025-3-22 05:52:19 | 只看該作者
5#
發(fā)表于 2025-3-22 09:05:24 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:38:22 | 只看該作者
8#
發(fā)表于 2025-3-22 22:36:17 | 只看該作者
9#
發(fā)表于 2025-3-23 01:44:11 | 只看該作者
Masanori Sawa,Masatake Hirao,Sanpei KageyamaCovers the constructions of optimal experimental designs comprehensively.Provides a novel framework for understanding optimal designs, based on the theory of cubature formulas in analysis and spherica
10#
發(fā)表于 2025-3-23 08:20:44 | 只看該作者
SpringerBriefs in Statisticshttp://image.papertrans.cn/e/image/316420.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 淅川县| 长武县| 双辽市| 四子王旗| 治县。| 高台县| 徐州市| 怀集县| 简阳市| 册亨县| 玉田县| 南投市| 榆树市| 高阳县| 前郭尔| 从江县| 五大连池市| 武城县| 滕州市| 台北县| 新巴尔虎右旗| 大城县| 化州市| 石景山区| 武邑县| 金昌市| 会昌县| 绥中县| 新乡市| 太仆寺旗| 灌南县| 广州市| 漾濞| 鞍山市| 砀山县| 云霄县| 长兴县| 明溪县| 厦门市| 徐州市|