找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation and Inferential Statistics; Pradip Kumar Sahu,Santi Ranjan Pal,Ajit Kumar Das Textbook 2015 Springer India 2015 Methods of Esti

[復(fù)制鏈接]
樓主: 古生物學
11#
發(fā)表于 2025-3-23 10:28:06 | 只看該作者
B. J. Tomlinson,B. Flake,T. RobertsInpoint estimation when a random sample . is drawn from a population having distribution function . and . is the unknown parameter (or the set of unknown parameter).
12#
發(fā)表于 2025-3-23 15:44:50 | 只看該作者
André Chardin,Damien Féger,Dick VerbeekIn parametric tests we generally assume a particular form of the population distribution (say, normal distribution) from which a random sample is drawn and we try to construct a test criterion (for testing hypothesis regarding parameter of the population) and the distribution of the test criterion depends upon the parent population.
13#
發(fā)表于 2025-3-23 19:15:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:51 | 只看該作者
Methods of Estimation,In chapter one, we have discussed different optimum properties of good point estimators viz. unbiasedness, minimum variance, consistency and efficiency which are the desirable properties of a good estimator.
15#
發(fā)表于 2025-3-24 02:22:06 | 只看該作者
Theory of Testing of Hypothesis,Consider a random sample from an infinite or a finite population. From such a sample or samples, we try to draw inference regarding population.
16#
發(fā)表于 2025-3-24 08:56:10 | 只看該作者
17#
發(fā)表于 2025-3-24 12:30:41 | 只看該作者
18#
發(fā)表于 2025-3-24 14:57:42 | 只看該作者
Non-parametric Test,In parametric tests we generally assume a particular form of the population distribution (say, normal distribution) from which a random sample is drawn and we try to construct a test criterion (for testing hypothesis regarding parameter of the population) and the distribution of the test criterion depends upon the parent population.
19#
發(fā)表于 2025-3-24 22:54:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:56:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邮市| 湖南省| 沁阳市| 湘潭市| 金山区| 兴化市| 乾安县| 永平县| 天水市| 珠海市| 吴江市| 门源| 香河县| 正定县| 搜索| 富平县| 通渭县| 上栗县| 铜梁县| 临武县| 泸西县| 巨野县| 金湖县| 田林县| 博客| 高邑县| 营口市| 定远县| 嵊泗县| 平乐县| 九江市| 兴山县| 鹿泉市| 博乐市| 如东县| 津市市| 额敏县| 桓仁| 永宁县| 博野县| 邮箱|