找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation and Control of Dynamical Systems; Alain Bensoussan Book 2018 Springer International Publishing AG, part of Springer Nature 2018

[復(fù)制鏈接]
樓主: fundoplication
31#
發(fā)表于 2025-3-27 00:17:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:16:18 | 只看該作者
Differential Games,We have . players, whose decisions are functions of time ..(.), .?=?1, ? , ., with values in ..
33#
發(fā)表于 2025-3-27 08:08:34 | 只看該作者
Stackelberg Differential Games,In Stackelberg games, the players are not on an equal footing. There is a leader and a follower. This is a generalization of the two-player zero-sum differential games considered in Section 16.4, in particular.
34#
發(fā)表于 2025-3-27 11:10:26 | 只看該作者
Target Problems,We follow N. Touzi (., Springer, 2013). We consider a financial market characterized by . assets, whose prices ..(.) follow the system of equations
35#
發(fā)表于 2025-3-27 17:20:42 | 只看該作者
https://doi.org/10.1007/978-3-030-91646-6 with stability we have also used a method that consists in solving an optimal control problem. Optimal control represents an essential branch of control theory. We shall present the general theory later on. In the case of linear systems, the results can be obtained by ad hoc techniques that are use
36#
發(fā)表于 2025-3-27 20:16:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:06:45 | 只看該作者
Roberto Bottiglia,Flavio Pichleroptimization problem, it is natural to look for necessary conditions of optimality for an optimal control. We explore this question in this section. Since it is a dynamic optimization, the role of time in expressing the necessary condition is important.
38#
發(fā)表于 2025-3-28 04:19:56 | 只看該作者
The Matter of Crowdfunding in China,ightly innovative. We try to present the basic concepts, and we do so for PDEs first. Parabolic quasilinear equations have been, of course, at the foundation of functional analysis and its development. However, in physics and in mechanics, one deals mostly with boundary value problems. The boundary
39#
發(fā)表于 2025-3-28 06:40:07 | 只看該作者
40#
發(fā)表于 2025-3-28 10:58:19 | 只看該作者
978-3-030-09236-8Springer International Publishing AG, part of Springer Nature 2018
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天柱县| 巴彦县| 甘泉县| 文山县| 鹤壁市| 临夏市| 林西县| 信阳市| 九台市| 伊川县| 泊头市| 册亨县| 通榆县| 化隆| 普定县| 邳州市| 高阳县| 乳源| 北流市| 南开区| 竹山县| 贞丰县| 大化| 韩城市| 松江区| 谢通门县| 枣庄市| 永平县| 津南区| 阿拉善左旗| 合川市| 攀枝花市| 且末县| 正宁县| 晋江市| 江华| 翁牛特旗| 北安市| 富阳市| 凭祥市| 蓝田县|