找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Essential Perturbation Methods; C.Y. Wang Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
樓主: 喝水
11#
發(fā)表于 2025-3-23 12:37:47 | 只看該作者
https://doi.org/10.1007/978-981-19-2964-9This chapter concerns the basics of the asymptotic expansion of a function.
12#
發(fā)表于 2025-3-23 16:56:46 | 只看該作者
13#
發(fā)表于 2025-3-23 19:08:37 | 只看該作者
https://doi.org/10.1057/9781137426284In this Chapter, non-singular eigenvalue problems are studied. Singular eigenvalue problems, when the eigenvalues are large, are treated in Chapter ..
14#
發(fā)表于 2025-3-24 01:40:05 | 只看該作者
Conflict, Interdependence, and JusticeSolutions to many problems, including differential equations, may be in integral form. Most integrals cannot be integrated analytically, and are very difficult to integrate numerically.
15#
發(fā)表于 2025-3-24 04:52:15 | 只看該作者
16#
發(fā)表于 2025-3-24 06:45:23 | 只看該作者
https://doi.org/10.1007/978-94-017-1135-7In this chapter we consider methods which solve singular perturbation problems which may not have boundary layers.
17#
發(fā)表于 2025-3-24 11:22:42 | 只看該作者
The Individual, the Group and WarIn this chapter, some applications in mechanics are given. We shall illustrate the complete process, from nondimensionalization, scaling, solving the perturbation problem, to the discussion of the results.
18#
發(fā)表于 2025-3-24 18:40:36 | 只看該作者
19#
發(fā)表于 2025-3-24 21:30:45 | 只看該作者
Asymptotic Expansion,This chapter concerns the basics of the asymptotic expansion of a function.
20#
發(fā)表于 2025-3-25 01:24:35 | 只看該作者
Basic Theory,The basic idea of perturbation is to express the unknown in an asymptotic expansion, and solve successively for each order.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石泉县| 休宁县| 乌拉特中旗| 佛学| 千阳县| 玛曲县| 威信县| 临桂县| 武平县| 云浮市| 凉城县| 广安市| 锦州市| 六盘水市| 天门市| 北川| 平阴县| 大安市| 黑水县| 综艺| 菏泽市| 长兴县| 洱源县| 虹口区| 北海市| 佛学| 依兰县| 加查县| 桂阳县| 玉溪市| 金堂县| 秦安县| 观塘区| 交口县| 贵溪市| 罗田县| 威远县| 宁都县| 昌图县| 新巴尔虎右旗| 嘉义县|