找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Essential Mathematics for Applied Fields; Richard M. Meyer Textbook 1979 Springer-Verlag New York Inc. 1979 Calc.Fields.Lemma.Mathematik.M

[復(fù)制鏈接]
查看: 27399|回復(fù): 61
樓主
發(fā)表于 2025-3-21 20:05:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Essential Mathematics for Applied Fields
編輯Richard M. Meyer
視頻videohttp://file.papertrans.cn/316/315477/315477.mp4
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: Essential Mathematics for Applied Fields;  Richard M. Meyer Textbook 1979 Springer-Verlag New York Inc. 1979 Calc.Fields.Lemma.Mathematik.M
描述1. Purpose The purpose of this work is to provide, in one volume, a wide spectrum of essential (non-measure theoretic) Mathematics for use by workers in the variety of applied fields. To obtain the background developed here in one volume would require studying a prohibitive number of separate Mathematics courses (assuming they were available). Before, much of the material now covered was (a) unavailable, (b) too widely scattered, or (c) too advanced as presented, to be of use to those who need it. Here, we present a sound basis requiring only Calculus through however, Differential Equations. It provides the needed flexibility to cope, in a rigorous manner, with the every-day, non-standard and new situations that present themselves. There is no substitute for this. 2. Arrangement The volume consists of twenty Sections, falling into several natural units: Basic Real Analysis 1. Sets, Sequences, Series, and Functions 2. Doubly Infinite Sequences and Series 3. Sequences and Series of Functions 4. Real Power Series 5. Behavior of a Function Near a Point: Various Types of Limits 6. Orders of Magnitude: the D, 0, ~ Notation 7. Some Abelian and Tauberian Theorems v Riemann-Stieltjes Integr
出版日期Textbook 1979
關(guān)鍵詞Calc; Fields; Lemma; Mathematik; Matrix; Mean value theorem; Volume; algebra; complex analysis; equation; eval
版次1
doihttps://doi.org/10.1007/978-1-4613-8072-6
isbn_softcover978-0-387-90450-4
isbn_ebook978-1-4613-8072-6Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York Inc. 1979
The information of publication is updating

書(shū)目名稱Essential Mathematics for Applied Fields影響因子(影響力)




書(shū)目名稱Essential Mathematics for Applied Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱Essential Mathematics for Applied Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Essential Mathematics for Applied Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Essential Mathematics for Applied Fields被引頻次




書(shū)目名稱Essential Mathematics for Applied Fields被引頻次學(xué)科排名




書(shū)目名稱Essential Mathematics for Applied Fields年度引用




書(shū)目名稱Essential Mathematics for Applied Fields年度引用學(xué)科排名




書(shū)目名稱Essential Mathematics for Applied Fields讀者反饋




書(shū)目名稱Essential Mathematics for Applied Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:32:00 | 只看該作者
地板
發(fā)表于 2025-3-22 08:07:52 | 只看該作者
1-Dimensional Riemann-Stieltjes Integral,own as the Riemann-Stieltjes Integral, must be called upon in many situations. In the present Section we shall develop what is termed a 1-dimensional Riemann-Stieltjes Integral, first with respect to a 1-dimensional c.d.f., then, more generally, with respect to b.v.f.
5#
發(fā)表于 2025-3-22 10:21:20 | 只看該作者
n-Dimensional Cumulative Distribution Functions and Bounded Variation Functions,me of their properties in this Section, and then apply these results in the following Section dealing with the n-dimensional Riemann-Stieltjes Integral. We shall follow the general pattern set in Section 8.
6#
發(fā)表于 2025-3-22 14:08:33 | 只看該作者
n-Dimensional Riemann-Stieltjes Integral,hen, more generally, with respect to left-continuous n-dimensional b.v.f.’s. The development closely parallels that of the 1-dimensional case, and for this reason we will generally be briefer with proofs and descriptions than before. However, this by no means indicates that the n-dimensional Integra
7#
發(fā)表于 2025-3-22 21:01:49 | 只看該作者
Complex Variables,e complex number system can be viewed as a useful generalization of the familiar real number system. For, if the real number system can be thought of as the familiar properties of points — called real numbers — on the real line, then the complex number system can be thought of as the yet-to-be-exami
8#
發(fā)表于 2025-3-23 01:06:22 | 只看該作者
9#
發(fā)表于 2025-3-23 04:23:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙山县| 通州区| 平昌县| 洛扎县| 洪洞县| 德安县| 建瓯市| 舟山市| 茶陵县| 大化| 顺昌县| 德清县| 曲阜市| 资源县| 灌阳县| 巴林右旗| 牙克石市| 隆子县| 元阳县| 永善县| 麻栗坡县| 昂仁县| 启东市| 双辽市| 隆昌县| 桂阳县| 淮安市| 泸溪县| 延川县| 循化| 崇阳县| 莱芜市| 阆中市| 广平县| 丰县| 宣城市| 河北省| 庆安县| 始兴县| 德兴市| 荔波县|