找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Essays on Pareto Optimality in Cooperative Games; Yaning Lin,Weihai Zhang Book 2022 Springer Nature Singapore Pte Ltd. 2022 Pareto optimal

[復制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 05:56:10 | 只看該作者
,LQ Pareto Game of?the?Stochastic Singular Systems in?Finite Horizon,ochastic singular systems is investigated. By introducing a new GDRE, we present a sufficient condition for the solvability of the optimization problem. In addition, we introduce two conditions to ensure the existence and uniqueness of the solution to the GDRE. Then, for the finite horizon stochasti
22#
發(fā)表于 2025-3-25 08:52:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:34:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:43 | 只看該作者
978-981-19-5051-3Springer Nature Singapore Pte Ltd. 2022
27#
發(fā)表于 2025-3-26 07:20:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:37:59 | 只看該作者
Introduction,In this chapter, we introduce the research background of this book, outline the definition and some basic characterizations of Pareto optimality and review the research status of Pareto optimality in cooperative differential games as well as various strategies in difference games.
29#
發(fā)表于 2025-3-26 13:52:09 | 只看該作者
,Hints for the user of “Comecon Data”,d on the equivalent characterization of Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Employing the stochastic Pontryagin’s minimum principle, necessary conditions for the existence of Pareto-efficient strategies
30#
發(fā)表于 2025-3-26 18:51:53 | 只看該作者
,Hints for the user of “COMECON DATA”,ty, necessary conditions for the existence of Pareto solutions are presented under certain assumption on the Lagrange multiplier set. Furthermore, a condition is introduced to guarantee that the above assumption is established for the LQ case. In addition, the sufficient conditions for a control to
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平陆县| 察哈| 延长县| 阿克| 科技| 绍兴市| 乌兰浩特市| 珠海市| 怀远县| 天全县| 高清| 南召县| 石棉县| 鲁山县| 七台河市| 开鲁县| 富平县| 广汉市| 沾益县| 仁寿县| 博罗县| 阳城县| 贵德县| 榕江县| 招远市| 祁阳县| 星子县| 香港| 金溪县| 石柱| 孝感市| 青海省| 平潭县| 麟游县| 万载县| 缙云县| 弥渡县| 孟村| 竹北市| 襄汾县| 抚远县|