找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Essays on Pareto Optimality in Cooperative Games; Yaning Lin,Weihai Zhang Book 2022 Springer Nature Singapore Pte Ltd. 2022 Pareto optimal

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 05:56:10 | 只看該作者
,LQ Pareto Game of?the?Stochastic Singular Systems in?Finite Horizon,ochastic singular systems is investigated. By introducing a new GDRE, we present a sufficient condition for the solvability of the optimization problem. In addition, we introduce two conditions to ensure the existence and uniqueness of the solution to the GDRE. Then, for the finite horizon stochasti
22#
發(fā)表于 2025-3-25 08:52:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:34:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:43 | 只看該作者
978-981-19-5051-3Springer Nature Singapore Pte Ltd. 2022
27#
發(fā)表于 2025-3-26 07:20:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:37:59 | 只看該作者
Introduction,In this chapter, we introduce the research background of this book, outline the definition and some basic characterizations of Pareto optimality and review the research status of Pareto optimality in cooperative differential games as well as various strategies in difference games.
29#
發(fā)表于 2025-3-26 13:52:09 | 只看該作者
,Hints for the user of “Comecon Data”,d on the equivalent characterization of Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Employing the stochastic Pontryagin’s minimum principle, necessary conditions for the existence of Pareto-efficient strategies
30#
發(fā)表于 2025-3-26 18:51:53 | 只看該作者
,Hints for the user of “COMECON DATA”,ty, necessary conditions for the existence of Pareto solutions are presented under certain assumption on the Lagrange multiplier set. Furthermore, a condition is introduced to guarantee that the above assumption is established for the LQ case. In addition, the sufficient conditions for a control to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉新县| 榆社县| 晴隆县| 库尔勒市| 宜宾市| 尖扎县| 游戏| 绩溪县| 灵山县| 许昌县| 寿宁县| 山西省| 涿鹿县| 峨山| 松滋市| 盘山县| 麻栗坡县| 中宁县| 马龙县| 射洪县| 六安市| 阿勒泰市| 沅江市| 石景山区| 防城港市| 邢台市| 获嘉县| 左贡县| 清苑县| 钦州市| 博罗县| 东莞市| 晋江市| 克什克腾旗| 太仆寺旗| 汕尾市| 全椒县| 光泽县| 修武县| 盱眙县| 德惠市|