找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Essays on Pareto Optimality in Cooperative Games; Yaning Lin,Weihai Zhang Book 2022 Springer Nature Singapore Pte Ltd. 2022 Pareto optimal

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 05:56:10 | 只看該作者
,LQ Pareto Game of?the?Stochastic Singular Systems in?Finite Horizon,ochastic singular systems is investigated. By introducing a new GDRE, we present a sufficient condition for the solvability of the optimization problem. In addition, we introduce two conditions to ensure the existence and uniqueness of the solution to the GDRE. Then, for the finite horizon stochasti
22#
發(fā)表于 2025-3-25 08:52:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:34:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:43 | 只看該作者
978-981-19-5051-3Springer Nature Singapore Pte Ltd. 2022
27#
發(fā)表于 2025-3-26 07:20:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:37:59 | 只看該作者
Introduction,In this chapter, we introduce the research background of this book, outline the definition and some basic characterizations of Pareto optimality and review the research status of Pareto optimality in cooperative differential games as well as various strategies in difference games.
29#
發(fā)表于 2025-3-26 13:52:09 | 只看該作者
,Hints for the user of “Comecon Data”,d on the equivalent characterization of Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Employing the stochastic Pontryagin’s minimum principle, necessary conditions for the existence of Pareto-efficient strategies
30#
發(fā)表于 2025-3-26 18:51:53 | 只看該作者
,Hints for the user of “COMECON DATA”,ty, necessary conditions for the existence of Pareto solutions are presented under certain assumption on the Lagrange multiplier set. Furthermore, a condition is introduced to guarantee that the above assumption is established for the LQ case. In addition, the sufficient conditions for a control to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武强县| 金寨县| 峡江县| 咸丰县| 马鞍山市| 湄潭县| 汝阳县| 兰州市| 共和县| 东港市| 安图县| 明星| 宝应县| 乌鲁木齐县| 平乡县| 土默特左旗| 泗阳县| 南川市| 类乌齐县| 时尚| 沁阳市| 扬州市| 象山县| 四川省| 旬阳县| 望都县| 湘乡市| 疏附县| 成都市| 清远市| 香格里拉县| 天柱县| 青海省| 奉新县| 土默特右旗| 宁化县| 南汇区| 郓城县| 凭祥市| 寻甸| 伽师县|