找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ernst Equation and Riemann Surfaces; Analytical and Numer Christian Klein Book 2005 Springer-Verlag Berlin Heidelberg 2005 Einstein equatio

[復(fù)制鏈接]
樓主: gratuity
31#
發(fā)表于 2025-3-26 21:11:05 | 只看該作者
Analyticity Properties and Limiting Cases,nvestigate interesting limiting cases as the limit of large distancefromthe material source. This allows to identify asymptotically .at solutions which can describe isolated matter sources. We also study the static limit and the ‘solitonic? limit, in which the Riemann surface degenerates. In this vi
32#
發(fā)表于 2025-3-27 01:38:37 | 只看該作者
33#
發(fā)表于 2025-3-27 08:43:49 | 只看該作者
Introduction, of a mechanical system is 2n–dimensional, n integralsof motion in involution are suffcient for a complete description of the dynamics of the system. In this case the initial conditions specify the integrals of motion and thus the complete time evolution of the system. The task is to find such a sys
34#
發(fā)表于 2025-3-27 11:11:57 | 只看該作者
The Ernst Equation,ary axisymmetric Einstein equations in vacuum. In fact the Ernst potential for the Kerr solution is just an algebraic function in suitable coordinates, see (1.8). In this chapter we study a dimensional reduction of the vacuum Einstein equations in the presence of two Killing vectors which will lead
35#
發(fā)表于 2025-3-27 15:33:42 | 只看該作者
,Riemann–Hilbert Problem and Fay’s Identity, matrix-valued function Φ. The important point is that this matrix depends on a spectral parameter. The existence of such a linear system can be used to generate large classes of solutions to the corresponding integrable equation. The idea is to construct a matrix Φwith certain analyticity propertie
36#
發(fā)表于 2025-3-27 21:45:41 | 只看該作者
37#
發(fā)表于 2025-3-28 00:18:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:28:53 | 只看該作者
39#
發(fā)表于 2025-3-28 08:57:44 | 只看該作者
Open Problems,es. Physical and mathematical properties of the solutions havebeen studied analytically and numerically for in principle arbitrary genus of the solution. As an example we have presented the counter–rotating dust disk [130] which is given on a surface of genus 2, andwhich was obtained as the solution
40#
發(fā)表于 2025-3-28 11:52:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 20:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武穴市| 汕头市| 霍邱县| 蕲春县| 青龙| 称多县| 岱山县| 永州市| 平江县| 洞口县| 林州市| 芦溪县| 阜南县| 宜黄县| 大城县| 东台市| 湖州市| 锡林浩特市| 德庆县| 宁波市| 方山县| 三原县| 昌吉市| 富民县| 西丰县| 洛扎县| 淳安县| 凤山县| 方山县| 平和县| 德阳市| 襄汾县| 鹤峰县| 温宿县| 东阳市| 利辛县| 安丘市| 兴文县| 阳东县| 潮州市| 新密市|