找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Semisimple Groups; Robert J. Zimmer Book 1984 Springer Science+Business Media New York 1984 Arithmetic.Identity.Lattice

[復(fù)制鏈接]
查看: 43953|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:38:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ergodic Theory and Semisimple Groups
編輯Robert J. Zimmer
視頻videohttp://file.papertrans.cn/315/314495/314495.mp4
叢書名稱Monographs in Mathematics
圖書封面Titlebook: Ergodic Theory and Semisimple Groups;  Robert J. Zimmer Book 1984 Springer Science+Business Media New York 1984 Arithmetic.Identity.Lattice
描述This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi- simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are anumber of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be deali
出版日期Book 1984
關(guān)鍵詞Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem
版次1
doihttps://doi.org/10.1007/978-1-4684-9488-4
isbn_softcover978-1-4684-9490-7
isbn_ebook978-1-4684-9488-4Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書目名稱Ergodic Theory and Semisimple Groups影響因子(影響力)




書目名稱Ergodic Theory and Semisimple Groups影響因子(影響力)學(xué)科排名




書目名稱Ergodic Theory and Semisimple Groups網(wǎng)絡(luò)公開度




書目名稱Ergodic Theory and Semisimple Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ergodic Theory and Semisimple Groups被引頻次




書目名稱Ergodic Theory and Semisimple Groups被引頻次學(xué)科排名




書目名稱Ergodic Theory and Semisimple Groups年度引用




書目名稱Ergodic Theory and Semisimple Groups年度引用學(xué)科排名




書目名稱Ergodic Theory and Semisimple Groups讀者反饋




書目名稱Ergodic Theory and Semisimple Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:48:53 | 只看該作者
地板
發(fā)表于 2025-3-22 05:21:31 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:00 | 只看該作者
Christopher McElroy,Stefan Jennewein over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.
6#
發(fā)表于 2025-3-22 15:08:46 | 只看該作者
Rigidity, over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.
7#
發(fā)表于 2025-3-22 18:33:38 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:26:49 | 只看該作者
Monographs in Mathematicshttp://image.papertrans.cn/e/image/314495.jpg
10#
發(fā)表于 2025-3-23 06:00:51 | 只看該作者
https://doi.org/10.1007/978-1-4684-9488-4Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
包头市| 兖州市| 德保县| 京山县| 金堂县| 桐柏县| 贺州市| 昌邑市| 松桃| 眉山市| 洪江市| 彩票| 宣城市| 凯里市| 乐平市| 平利县| 青神县| 景谷| 滨海县| 梅州市| 凤城市| 英山县| 马公市| 兴国县| 平泉县| 长丰县| 凤庆县| 博湖县| 镶黄旗| 大连市| 罗山县| 桂林市| 治多县| 贡嘎县| 米脂县| 深州市| 万年县| 公安县| 密山市| 大庆市| 冀州市|