找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory; Independence and Dic David Kerr,Hanfeng Li Book 2016 Springer International Publishing AG 2016 Ergodic Theory.Topological D

[復(fù)制鏈接]
樓主: 母牛膽小鬼
11#
發(fā)表于 2025-3-23 13:18:51 | 只看該作者
12#
發(fā)表于 2025-3-23 14:33:55 | 只看該作者
The Emergence of Neuromarketing,Along with Bernoulli actions, finitely presented algebraic actions can be viewed as the basic prototypes for dynamical entropy.
13#
發(fā)表于 2025-3-23 20:43:06 | 只看該作者
14#
發(fā)表于 2025-3-23 23:00:09 | 只看該作者
15#
發(fā)表于 2025-3-24 02:38:15 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:15 | 只看該作者
Orbit Equivalence Beyond AmenabilityThe Ornstein-Weiss theorem (Theorem?.) asserts that the ergodic p.m.p. actions of countably infinite amenable groups are collectively responsible for a single orbit equivalence class. As soon as one moves beyond amenability, however, this triviality gives way to a staggering richness that is far from being completely understood.
17#
發(fā)表于 2025-3-24 13:36:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:14:18 | 只看該作者
Entropy for Actions of Sofic GroupsIn Section?. we arrived at a definition of entropy for p.m.p. actions of amenable groups by combining a concept which is internal to the space (the Shannon entropy of a partition) with one which is internal to the group (the process of averaging over F?lner sets).
19#
發(fā)表于 2025-3-24 21:51:25 | 只看該作者
The ,-InvariantWith his introduction of the .-invariant in the late 2000s, Bowen gave the first proof that two Bernoulli actions over a non-Abelian free group of finite rank are not conjugate if the Shannon entropies of their bases disagree.
20#
發(fā)表于 2025-3-25 02:31:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖边县| 沾化县| 新干县| 阿拉善左旗| 中江县| 宁海县| 梁平县| 保德县| 连平县| 金昌市| 遵化市| 阿拉善右旗| 建始县| 陆丰市| 蒙山县| 罗平县| 昂仁县| 威远县| 平果县| 永嘉县| 荃湾区| 肇源县| 古交市| 民丰县| 泌阳县| 淮阳县| 财经| 贺州市| 壶关县| 荥阳市| 陇南市| 罗山县| 普安县| 定南县| 安西县| 芜湖市| 蓝田县| 哈巴河县| 全椒县| 古田县| 阳朔县|