找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theoretic Methods in Group Homology; A Minicourse on L2-B Clara L?h Book 2020 The Author(s), under exclusive license to Springer Na

[復(fù)制鏈接]
樓主: Tyler
21#
發(fā)表于 2025-3-25 07:24:04 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:49 | 只看該作者
The von Neumann Dimension,ion; this leads to .-Betti numbers. In this chapter, we will introduce such an equivariant version of dimension, using the group von Neumann algebra. In Chap.?., this dimension will allow us to define .-Betti numbers of groups and spaces.
23#
發(fā)表于 2025-3-25 13:48:45 | 只看該作者
The Residually Nite View: Approximation,rings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
24#
發(fā)表于 2025-3-25 16:23:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:55 | 只看該作者
Invariant Random Subgroups,in the statement of the theorem and two instructive examples. We will then sketch how ergodic theory, in the incarnation of invariant random subgroups, helps to handle such homology gradients and outline the structure of the proof of the theorem.
26#
發(fā)表于 2025-3-26 03:35:47 | 只看該作者
27#
發(fā)表于 2025-3-26 07:15:00 | 只看該作者
Redouane Choukr-Allah,Ragab Ragabrings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
28#
發(fā)表于 2025-3-26 09:16:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德安县| 全南县| 五常市| 甘谷县| 镇康县| 疏附县| 锡林郭勒盟| 佛教| 阿城市| 吉林市| 方正县| 湾仔区| 遵义县| 九江市| 五河县| 交城县| 合阳县| 沂水县| 肇源县| 恩施市| 安义县| 灵台县| 太湖县| 崇信县| 清苑县| 天柱县| 黄大仙区| 定州市| 金寨县| 威远县| 塔城市| 东山县| 犍为县| 措美县| 延边| 松桃| 永济市| 阿巴嘎旗| 中阳县| 忻州市| 教育|