找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theorems for Group Actions; Informational and Th Arkady Tempelman Book 1992 Springer Science+Business Media Dordrecht 1992 Maxima.P

[復(fù)制鏈接]
樓主: obsess
11#
發(fā)表于 2025-3-23 13:46:21 | 只看該作者
Overview: 978-90-481-4155-5978-94-017-1460-0
12#
發(fā)表于 2025-3-23 17:28:10 | 只看該作者
https://doi.org/10.1007/978-94-017-1460-0Maxima; Probability theory; harmonic analysis; measure theory; statistical physics
13#
發(fā)表于 2025-3-23 18:41:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:16:27 | 只看該作者
Supriya Ratnaparkhe,Milind B. RatnaparkheLet . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
16#
發(fā)表于 2025-3-24 08:38:03 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:16 | 只看該作者
N. Dhivya Priya,M. ThirumarimuruganWe denote by . the space of all measurable .-valued functions with the seminorm . convergence in . is the same as convergence in ..
18#
發(fā)表于 2025-3-24 17:53:45 | 只看該作者
Introduction,This book deals with problems connected with generalizations of classical ergodic theorems for endomorphisms and flows in measure spaces; first of all with the “pointwise” BirkhofF and the “mean” von Neumann ergodic theorems. We shall briefly discuss the content and the role of these two theorems.
19#
發(fā)表于 2025-3-24 20:18:53 | 只看該作者
Averaging Sequences. Universal Ergodic Theorems,Let (., B) be a measurable semigroup; B . (B) the Banach space of all signed measures of bounded variation on B with norm ‖.‖ = var .; P(B) the set of all probability measures on B; . the set of all probability measures . on . whose carriers .(.) are finite sets; and let F. be the subspace in .. consisting of the bounded measurable functions on ..
20#
發(fā)表于 2025-3-25 02:05:28 | 只看該作者
Mean Ergodic Theorems,Let . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托里县| 施秉县| 宝丰县| 寿宁县| 星座| 淮南市| 桐城市| 视频| 邻水| 遂昌县| 苏尼特左旗| 昭觉县| 怀远县| 喀喇沁旗| 瑞丽市| 潮州市| 靖宇县| 景东| 布拖县| 垣曲县| 泸西县| 崇阳县| 汉沽区| 长顺县| 象山县| 塔城市| 虞城县| 淮安市| 合山市| 敦化市| 中山市| 郁南县| 比如县| 和政县| 文水县| 泉州市| 山东省| 张家界市| 南溪县| 察隅县| 张家界市|