找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theorems for Group Actions; Informational and Th Arkady Tempelman Book 1992 Springer Science+Business Media Dordrecht 1992 Maxima.P

[復(fù)制鏈接]
樓主: obsess
11#
發(fā)表于 2025-3-23 13:46:21 | 只看該作者
Overview: 978-90-481-4155-5978-94-017-1460-0
12#
發(fā)表于 2025-3-23 17:28:10 | 只看該作者
https://doi.org/10.1007/978-94-017-1460-0Maxima; Probability theory; harmonic analysis; measure theory; statistical physics
13#
發(fā)表于 2025-3-23 18:41:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:16:27 | 只看該作者
Supriya Ratnaparkhe,Milind B. RatnaparkheLet . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
16#
發(fā)表于 2025-3-24 08:38:03 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:16 | 只看該作者
N. Dhivya Priya,M. ThirumarimuruganWe denote by . the space of all measurable .-valued functions with the seminorm . convergence in . is the same as convergence in ..
18#
發(fā)表于 2025-3-24 17:53:45 | 只看該作者
Introduction,This book deals with problems connected with generalizations of classical ergodic theorems for endomorphisms and flows in measure spaces; first of all with the “pointwise” BirkhofF and the “mean” von Neumann ergodic theorems. We shall briefly discuss the content and the role of these two theorems.
19#
發(fā)表于 2025-3-24 20:18:53 | 只看該作者
Averaging Sequences. Universal Ergodic Theorems,Let (., B) be a measurable semigroup; B . (B) the Banach space of all signed measures of bounded variation on B with norm ‖.‖ = var .; P(B) the set of all probability measures on B; . the set of all probability measures . on . whose carriers .(.) are finite sets; and let F. be the subspace in .. consisting of the bounded measurable functions on ..
20#
發(fā)表于 2025-3-25 02:05:28 | 只看該作者
Mean Ergodic Theorems,Let . be a topological semigroup, B the .-algebra of Borel sets in ., and {.., . ∈ .} a net of Borel probability measures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴隆县| 房山区| 阳谷县| 大冶市| 通江县| 潞城市| 开原市| 鹤庆县| 樟树市| 三河市| 布尔津县| 东安县| 香格里拉县| 蚌埠市| 福安市| 霍州市| 揭东县| 南平市| 阿合奇县| 营山县| 资溪县| 容城县| 宁明县| 淮南市| 邵武市| 西充县| 巴楚县| 宜丰县| 余干县| 施秉县| 沙湾县| 玉环县| 温宿县| 界首市| 四川省| 鄯善县| 手游| 图木舒克市| 赣州市| 红安县| 德江县|