找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Optimization in the Expanding Case; Concepts, Tools and Eduardo Garibaldi Book 2017 The Author(s) 2017 ergodic optimization.weak K

[復(fù)制鏈接]
樓主: intrinsic
21#
發(fā)表于 2025-3-25 06:52:56 | 只看該作者
Riyaz Ahmad Mir,Khurshid Ahmad Lonest possible subset of the phase space, that is, on the Aubry set. Named separating sub-actions, we will show how they can be obtained from non-trivial convex combinations of the members of the family of calibrated sub-actions given by the Peierls barrier or by the Ma?é potential.
22#
發(fā)表于 2025-3-25 08:53:32 | 只看該作者
23#
發(fā)表于 2025-3-25 15:15:32 | 只看該作者
24#
發(fā)表于 2025-3-25 18:50:49 | 只看該作者
25#
發(fā)表于 2025-3-25 22:25:22 | 只看該作者
26#
發(fā)表于 2025-3-26 03:41:29 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:03:34 | 只看該作者
Further Properties of Sub-actions,ials that are not cohomologous to a constant, the separating sub-actions explicitly constructed in the previous chapter are quite particular and actually represent a small part of the whole set of Lipschitz continuous separating sub-actions.
29#
發(fā)表于 2025-3-26 14:16:53 | 只看該作者
Book 2017k presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory..
30#
發(fā)表于 2025-3-26 19:32:44 | 只看該作者
2191-8198 evance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory..978-3-319-66642-6978-3-319-66643-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑阁县| 冀州市| 基隆市| 如皋市| 礼泉县| 犍为县| 武强县| 平顶山市| 万荣县| 恩平市| 平山县| 瓮安县| 盖州市| 嘉鱼县| 洛扎县| 道真| 汾西县| 增城市| 巩留县| 抚宁县| 麦盖提县| 静海县| 新河县| 元朗区| 温泉县| 贡觉县| 都兰县| 弥勒县| 普兰县| 英德市| 南召县| 泰来县| 四平市| 沈阳市| 金塔县| 永定县| 恭城| 乌什县| 克什克腾旗| 托克逊县| 绍兴市|