找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Erfassen, Verarbeiten und Zuordnen multivariater Messgr??en; Neue Rahmenbedingung Gerhard Sartorius Book 20191st edition Springer Fachmedie

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 06:37:38 | 只看該作者
22#
發(fā)表于 2025-3-25 07:44:21 | 只看該作者
https://doi.org/10.1007/978-3-030-29718-3izienten, als FT-Koeffizienten oder in dimensionsreduzierter Form der Verarbeitung im Assoziationsraum zur Filterung, zur Bildung der Rekonstruktionsgewichte des NN-Verfahrens und zur Skalierung und Anpassung dem Assoziationsraum zuzuführen.
23#
發(fā)表于 2025-3-25 14:08:48 | 只看該作者
https://doi.org/10.1057/9780230380080onstruierbar sind und andererseits im Falle einer Koeffizientendarstellung oder direkter Werte in untransformierter Darstellung so aufbereitet, dass nur Koeffizienten oder Werte, die mit eindeutigen Informationen zur Repr?sentation der charakteristischen Eigenschaften des Messobjektes beitragen, in das Modell M gelangen.
24#
發(fā)表于 2025-3-25 18:35:14 | 只看該作者
,The Baroque Machinery of the Auto de Fé, des Verfahrens sind aus den erzielten Abbildungsergebnissen deduzierbar. In der Arbeitsphase kommen dabei zwei verschiedene Methoden zur Bestimmung der Rekonstruktionsgewichte zum Einsatz, die sich hinsichtlich des Aufwandes unterscheiden und verschiedene Vorteile bezüglich m?glicher Anwendungen bieten.
25#
發(fā)表于 2025-3-25 21:21:22 | 只看該作者
Einleitung,htlinearen Verh?ltnissen wird die Realisierung noch aufwendiger und damit meist praktisch nicht mehr durchführbar. Künstliche neuronale oder auch konnektionistische Netze sind dagegen gut geeignet, multivariate Messgr??en effizient zu verarbeiten.
26#
發(fā)表于 2025-3-26 01:24:18 | 只看該作者
27#
發(fā)表于 2025-3-26 06:02:28 | 只看該作者
,Distanz- und ?hnlichkeitsma?e,ultidimensionalen Raum sind. Dies bietet die M?glichkeit, festzustellen, ob Objekte sicher unterschieden werden k?nnen, um die Voraussetzungen für Modelle zu schaffen, deren Anwendung eine genaue und zuverl?ssige Klassifikation liefert.
28#
發(fā)表于 2025-3-26 11:25:49 | 只看該作者
Wavelet-Transformation,enschaften und die überführung in die Koeffizientendarstellung wirkt distanzerhaltend. Die Eigenschaften und der Realisierungsaufwand der WT, der Fourier-Transformation (FT) und anderer Transformationen, die eine Koeffizientendarstellung des Klassifizierungsobjekts erm?glichen, werden genannt.
29#
發(fā)表于 2025-3-26 14:07:42 | 只看該作者
,N?chste-Nachbarn-Verfahren und Dimensionsreduktion,sdimension viel h?her ist als die innere Dimension des zugrunde liegenden Gebildes. Mit der Dimensionsreduktion (DR) soll ein isometrisches Abbild einer im hochdimensionalen Eingangsraum befindlichen MF ermittelt werden, um anschlie?end mit den gefundenen Gesetzm??igkeiten die Grundinformation dieser MF in einem geeigneten Raum zu entfalten.
30#
發(fā)表于 2025-3-26 19:11:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹山县| 禄丰县| 赤水市| 邵武市| 民乐县| 新竹县| 新河县| 崇仁县| 平顶山市| 高碑店市| 县级市| 平凉市| 泌阳县| 永济市| 鄂托克旗| 本溪市| 南平市| 镇远县| 邓州市| 兴化市| 乾安县| 司法| 老河口市| 顺昌县| 上高县| 承德市| 横峰县| 敖汉旗| 盐亭县| 宝山区| 天水市| 章丘市| 莆田市| 苍梧县| 汽车| 甘孜县| 苏尼特左旗| 天祝| 伊川县| 蒲江县| 温泉县|