找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equivariant K-Theory and Freeness of Group Actions on C*-Algebras; N. Christopher Phillips Book 1987 Springer-Verlag Berlin Heidelberg 198

[復(fù)制鏈接]
查看: 42681|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:42:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras
編輯N. Christopher Phillips
視頻videohttp://file.papertrans.cn/314/313547/313547.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Equivariant K-Theory and Freeness of Group Actions on C*-Algebras;  N. Christopher Phillips Book 1987 Springer-Verlag Berlin Heidelberg 198
描述Freeness of an action of a compact Lie group on a compact Hausdorff space is equivalent to a simple condition on the corresponding equivariant K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. Lacking an appropriate definition of a free action on a C*-algebra, one is led instead to the study of actions satisfying conditions on equivariant K-theory - in the cases of spaces, simply freeness. The first third of this book is a detailed exposition of equivariant K-theory and KK-theory, assuming only a general knowledge of C*-algebras and some ordinary K-theory. It continues with the author‘s research on K-theoretic freeness of actions. It is shown that many properties of freeness generalize, while others do not, and that certain forms of K-theoretic freeness are related to other noncommutative measures of freeness, such as the Connes spectrum. The implications of K-theoretic freeness for actions on type I and AF algebras are also examined, and in
出版日期Book 1987
關(guān)鍵詞K-theory; algebra; group action; lie group
版次1
doihttps://doi.org/10.1007/BFb0078657
isbn_softcover978-3-540-18277-1
isbn_ebook978-3-540-47868-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras影響因子(影響力)




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras影響因子(影響力)學(xué)科排名




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras網(wǎng)絡(luò)公開度




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras被引頻次




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras被引頻次學(xué)科排名




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras年度引用




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras年度引用學(xué)科排名




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras讀者反饋




書目名稱Equivariant K-Theory and Freeness of Group Actions on C*-Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:06:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:14:37 | 只看該作者
Equivariant K-Theory and Freeness of Group Actions on C*-Algebras
地板
發(fā)表于 2025-3-22 04:40:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:29:24 | 只看該作者
6#
發(fā)表于 2025-3-22 16:29:26 | 只看該作者
0075-8434 nt K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. La
7#
發(fā)表于 2025-3-22 20:05:30 | 只看該作者
8#
發(fā)表于 2025-3-22 21:58:13 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/313547.jpg
9#
發(fā)表于 2025-3-23 02:55:32 | 只看該作者
10#
發(fā)表于 2025-3-23 08:34:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽清县| 栾川县| 岑溪市| 清原| 三明市| 木兰县| 博客| 永春县| 关岭| 曲阳县| 扎兰屯市| 新龙县| 会理县| 讷河市| 韩城市| 石阡县| 遂川县| 齐齐哈尔市| 临邑县| 新安县| 平塘县| 永新县| 腾冲县| 保德县| 彝良县| 隆林| 泸定县| 阿图什市| 泾阳县| 灵石县| 合川市| 广西| 满洲里市| 阳谷县| 青阳县| 蓬莱市| 江门市| 镇雄县| 金乡县| 芒康县| 纳雍县|