找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equimultiplicity and Blowing Up; An Algebraic Study Manfred Herrmann,Ulrich Orbanz,Shin Ikeda Book 1988 Springer-Verlag Berlin Heidelberg 1

[復制鏈接]
樓主: sustained
11#
發(fā)表于 2025-3-23 10:00:31 | 只看該作者
Review of Multiplicity Theory,In this chapter we collect all the basic facts about multiplicities, Hilbert functions and reductions of ideals. At the same time we will introduce the notations to be used throughout the book.
12#
發(fā)表于 2025-3-23 17:13:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:47 | 只看該作者
978-3-642-64803-8Springer-Verlag Berlin Heidelberg 1988
14#
發(fā)表于 2025-3-23 22:19:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:46:51 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:02:15 | 只看該作者
Local Cohomology and Duality of Graded Rings,most results in this chapter hold for any noetherian ring or any noetherian local ring R by regarding R as a graded ring with the trivial grading R. = R and R. = 0 for n ≠ 0. On the other hand our theory of graded rings can be extended to any ..-graded rings as Goto and Watanabe have done in [17].
18#
發(fā)表于 2025-3-24 18:04:42 | 只看該作者
19#
發(fā)表于 2025-3-24 23:00:47 | 只看該作者
Petr Kaplicky,Josef Málek,Jana Staráves. Finally for inequalities of Hilbert functions under blowing up other centers one has to apply this semicontinuity. The last Section 32 is related to equisingularity theory via flat families. As before (R,m,k) is again a noetherian local ring and I a proper ideal of R.
20#
發(fā)表于 2025-3-25 00:17:45 | 只看該作者
https://doi.org/10.1007/978-1-4614-2236-5ohomology, see main Theorem (44.1). Then we ask this question for Rees rings of equimultiple ideals I, in particular of m-primary ideals and of ideals q and q., where q is generated by a system of parameters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
万全县| 衡东县| 曲靖市| 华宁县| 上思县| 深泽县| 张家界市| 宜章县| 福泉市| 随州市| 汪清县| 普安县| 门头沟区| 高要市| 马边| 九寨沟县| 安阳县| 峨边| 康乐县| 龙泉市| 海原县| 丹东市| 西昌市| 辉县市| 福建省| 射洪县| 高台县| 兴隆县| 白朗县| 乌什县| 贺州市| 台中市| 高邑县| 平塘县| 贡觉县| 无为县| 金溪县| 中方县| 吐鲁番市| 中阳县| 陈巴尔虎旗|