找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equilibrium Theory in Infinite Dimensional Spaces; M. Ali Khan,Nicholas C. Yannelis Book 1991 Springer-Verlag Berlin Heidelberg 1991 Gleic

[復(fù)制鏈接]
樓主: 動詞
11#
發(fā)表于 2025-3-23 13:32:21 | 只看該作者
https://doi.org/10.1007/978-3-319-21106-0in the presence of infinitely many commodities the Aumann (1964, 1966) measure space of agents, i.e., the interval [0,1] endowed with Lebesgue measure, is not appropriate to model the idea of perfect competition and we provide a characterization of the “appropriate” measure space of agents in an inf
12#
發(fā)表于 2025-3-23 16:21:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:44 | 只看該作者
Topological Analysis of the Fukui Functionrinciple is proven, and the set of equilibria is compared with the sets of strategy and action correlated equilibria. The equilibrium correspondence is shown to be discontinuous with respect to the information structure of the game, in contrast with previous continuity results for strategy and actio
14#
發(fā)表于 2025-3-23 22:59:40 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:12:44 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:29 | 只看該作者
Applications of Synchrotron RadiationThe equilibrium existence theorem we obtain resembles Robert Aumann’s (1966) Auxiliary Theorem, in which he assumes that preferences are commodity-wise saturated. Our result may therefore be looked upon as a first step towards a satisfactory existence theorem for .. (if such a theorem exists).
19#
發(fā)表于 2025-3-24 20:58:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:57 | 只看該作者
https://doi.org/10.1007/978-3-540-49556-7We provide sufficient conditions which guarantee the existence of correlated equilibria in noncooperative games with finitely many players.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
登封市| 兴业县| 奈曼旗| 榆社县| 青铜峡市| 吴江市| 美姑县| 宜兴市| 贺兰县| 徐闻县| 郑州市| 孝感市| 新邵县| 汾阳市| 沈阳市| 青河县| 堆龙德庆县| 资阳市| 辽宁省| 汝城县| 桦甸市| 林芝县| 绍兴县| 行唐县| 溆浦县| 柳江县| 金川县| 长宁区| 葵青区| 驻马店市| 白城市| 八宿县| 石嘴山市| 滨州市| 德阳市| 土默特左旗| 甘洛县| 彝良县| 清河县| 昌图县| 桃江县|