找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Equidistribution in Number Theory, An Introduction; Andrew Granville,Zeév Rudnick Conference proceedings 20071st edition Springer Science+

[復(fù)制鏈接]
樓主: OAK
21#
發(fā)表于 2025-3-25 06:14:05 | 只看該作者
The World of Dimensions in Craft,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
22#
發(fā)表于 2025-3-25 10:31:35 | 只看該作者
Sachin Mishra,S. K. Singal,D. K. Khatod 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.
23#
發(fā)表于 2025-3-25 15:39:24 | 只看該作者
UNIFORM DISTRIBUTION, EXPONENTIAL SUMS, AND CRYPTOGRAPHY,istribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
24#
發(fā)表于 2025-3-25 17:51:52 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:42 | 只看該作者
UNIVERSAL TORSORS OVER DEL PEZZO SURFACES AND RATIONAL POINTS,hlighting the use of universal torsors in such counting problems. To illustrate the method, we provide a proof of Manin’s conjecture for the unique split singular quartic Del Pezzo surface with a singularity of type ...
26#
發(fā)表于 2025-3-26 01:58:05 | 只看該作者
THE ARITHMETIC THEORY OF QUANTUM MAPS, 2006). I will then survey the problem of quantum equidistribution for this model. This model was introduced by Hannay and Berry (Hannay and Berry, 1980). It turns out that it has a rich arithmetic structure, and its study uses several ingredients in modern number theory.
27#
發(fā)表于 2025-3-26 05:43:59 | 只看該作者
Future Challenges and Perspective,umber of (unit) squares inside. There is obviously a little ambiguity in deciding how to count the squares which straddle the boundary. Whatever the protocol, if the boundary is more-or-less smooth then the number of squares in question is proportional to the perimeter of the body, which will be sma
28#
發(fā)表于 2025-3-26 11:24:47 | 只看該作者
29#
發(fā)表于 2025-3-26 15:42:21 | 只看該作者
https://doi.org/10.1007/978-3-319-23537-0jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
30#
發(fā)表于 2025-3-26 18:55:33 | 只看該作者
Consensus Drug Design Using IT Microcosm,he opportunity of giving these lectures. The aim of this text is to describe the conjectures of Manin–Mumford, Bogomolov and André–Oort from the point of view of equidistribution. This includes a discussion of equidistribution of points with small heights of CM points and of Hecke points.We tried al
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都兰县| 松滋市| 花莲县| 梅河口市| 苏尼特左旗| 丹凤县| 沙湾县| 台中市| 忻城县| 介休市| 堆龙德庆县| 方正县| 綦江县| 沈阳市| 延长县| 响水县| 铁岭县| 郸城县| 乌兰县| 偏关县| 留坝县| 本溪| 沈阳市| 内乡县| 志丹县| 镇宁| 舟山市| 乡城县| 嘉峪关市| 临夏市| 新余市| 潞西市| 读书| 张家港市| 永寿县| 西青区| 胶州市| 万州区| 门头沟区| 永修县| 建瓯市|