找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equidistribution in Number Theory, An Introduction; Andrew Granville,Zeév Rudnick Conference proceedings 20071st edition Springer Science+

[復(fù)制鏈接]
樓主: OAK
11#
發(fā)表于 2025-3-23 13:43:41 | 只看該作者
,SIEVING AND THE ERD?S–KAC THEOREM,We give a relatively easy proof of the Erd?s-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.
12#
發(fā)表于 2025-3-23 15:50:23 | 只看該作者
THE DISTRIBUTION OF PRIME NUMBERS,What follows is an expanded version of my lectures at the NATO School on Equidistribution. I have tried to keep the informal style of the lectures. In particular, I have sometimes oversimplified matters in order to convey the spirit of an argument.
13#
發(fā)表于 2025-3-23 21:20:42 | 只看該作者
THE DISTRIBUTION OF ROOTS OF A POLYNOMIAL,How are the roots of a polynomial distributed (in ?)? The question is too vague for if one chooses one’s favourite complex numbers z., z., ?, z. then the polynomial Π..(x - z.) has its roots at these points.
14#
發(fā)表于 2025-3-23 23:05:24 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:43 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:57 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:50 | 只看該作者
18#
發(fā)表于 2025-3-24 17:27:38 | 只看該作者
https://doi.org/10.1007/978-1-4020-5404-4Chemistry; Mathematics; NATO; Physics; Prime; Prime number; Science; Series II; algebraic varieties; calculus
19#
發(fā)表于 2025-3-24 19:00:48 | 只看該作者
Saket Verma,L. M. Das,S. C. Kaushikistribution and, in turn, the bounding of relevant exponential sums. Several of the bounds we give have since been quantitatively sharpened, by Garaev (Garaev, 2005) and, spectacularly so, in recent work of Bourgain (Bourgain, 2004; Bourgain, 2005).
20#
發(fā)表于 2025-3-25 02:40:17 | 只看該作者
https://doi.org/10.1007/978-3-319-23537-0jective hyper-surfaces; in Ullmo’s course we study Galois orbits and Duke’s lectures deal with CM-points on the modular curve. This lecture concerns one of the earliest examples, namely torsion points on group varieties.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
收藏| 改则县| 囊谦县| 三原县| 深水埗区| 盐亭县| 连江县| 九江县| 城固县| 东平县| 垦利县| 平武县| 枞阳县| 从化市| 柘荣县| 米易县| 罗定市| 奈曼旗| 台中县| 阿拉尔市| 阳高县| 泸西县| 河曲县| 尉犁县| 岑巩县| 兴文县| 定南县| 荃湾区| 徐州市| 高清| 井冈山市| 陵川县| 玉林市| 万安县| 大悟县| 沙田区| 柘荣县| 政和县| 荔浦县| 泰顺县| 桃园县|