找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees; Applications to Non- Anne Broise-Alamichel,Jouni Pa

[復(fù)制鏈接]
樓主: Maudlin
21#
發(fā)表于 2025-3-25 04:05:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:13:59 | 只看該作者
Application of Bamboo in Building EnvelopeIn this chapter, we give background information and preliminary results on the main link between the geometry and the algebra used for our arithmetic applications: the (discrete-time) geodesic ow on quotients of Bruhat{Tits trees by arithmetic lattices.
23#
發(fā)表于 2025-3-25 14:24:03 | 只看該作者
Susan E. Swedo,Judith L. RapoportLet K be a (global) function field over F. of genus g, let v be a (normaliseddiscrete) valuation of K, let K. be the associated completion of K, and let R.be the affine function ring associated with v.
24#
發(fā)表于 2025-3-25 15:54:28 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:33 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:47 | 只看該作者
Potentials, Critical Exponents,and Gibbs CocyclesLet X be a geodesically complete proper CAT(–1) space, let x. ∈ X be an arbitrary basepoint, and let Γ be a nonelementary discrete group of isometries of X.
27#
發(fā)表于 2025-3-26 08:08:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:11 | 只看該作者
Symbolic Dynamics of Geodesic Flows on TreesIn this chapter, we give a coding of the discrete-time geodesic ow on the nonwandering sets of quotients of locally finite simplicial trees X without terminal vertices by nonelementary discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet.
29#
發(fā)表于 2025-3-26 14:23:57 | 只看該作者
Random Walks on Weighted Graphs of GroupsLet X be a locally finite simplicial tree without terminal vertices, and let X = ∣X∣.be its geometric realisation. Let Γ be a nonelementary discrete subgroup of Aut(X).
30#
發(fā)表于 2025-3-26 20:09:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗定市| 和平区| 沙坪坝区| 晋城| 沙雅县| 台南县| 西林县| 鞍山市| 工布江达县| 雷波县| 建湖县| 清苑县| 宁德市| 大新县| 大邑县| 延寿县| 仙居县| 漳平市| 潜山县| 辽中县| 永济市| 突泉县| 扶余县| 左权县| 大理市| 正安县| 连城县| 新乐市| 尼勒克县| 砚山县| 武胜县| 聊城市| 兴城市| 屏东市| 济源市| 黔东| 郓城县| 岳普湖县| 南充市| 林甸县| 拉孜县|