找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equations of Motion for Incompressible Viscous Fluids; With Mixed Boundary Tujin Kim,Daomin Cao Book 2021 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: industrious
31#
發(fā)表于 2025-3-26 22:04:00 | 只看該作者
Fluid Equations,ee kind of bilinear forms for the Stokes and Navier-Stokes equations, variational formulations for the Navier-Stokes problems with mixed boundary conditions and establish the equivalence between the variational formulations and the original PDE problems.
32#
發(fā)表于 2025-3-27 04:03:21 | 只看該作者
The Steady Navier-Stokes System,ed, types of boundary conditions under consideration together are different. The variational formulations in Sect. . do not reflect, for example, the boundary conditions for stress and pressure together, but this case is important in practice.
33#
發(fā)表于 2025-3-27 07:21:50 | 只看該作者
The Steady Boussinesq System,hlet, Neumann and Robin conditions together. We will get variational formulations consisting of a variational inequality for velocity and a variational equation for temperature, which are equivalent to the original PDE problems for smooth solutions.
34#
發(fā)表于 2025-3-27 13:21:21 | 只看該作者
35#
發(fā)表于 2025-3-27 13:55:22 | 只看該作者
36#
發(fā)表于 2025-3-27 18:04:35 | 只看該作者
37#
發(fā)表于 2025-3-27 22:18:05 | 只看該作者
The Non-steady Navier-Stokes System with Friction Boundary Conditions,inequalities obtained in Sect. .. In Sect. . using the results of Sect. ., we get the existence, uniqueness and estimates of solutions to the Navier-Stokes and Stokes problems with the boundary conditions.
38#
發(fā)表于 2025-3-28 05:48:04 | 只看該作者
39#
發(fā)表于 2025-3-28 06:20:40 | 只看該作者
The Steady Equations for Heat-Conducting Fluids,ect. ., we get variational formulations consisting of a variational inequality for velocity and a variational equation for temperature, which are equivalent to the original PDE problems for smooth solutions.
40#
發(fā)表于 2025-3-28 11:56:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳阳县| 绩溪县| 肃宁县| 云和县| 游戏| 马关县| 河东区| 红桥区| 武隆县| 邵阳市| 岢岚县| 忻城县| 方正县| 临汾市| 潜江市| 阳高县| 武威市| 乐山市| 忻州市| 武宣县| 渭南市| 鄱阳县| 达孜县| 商水县| 格尔木市| 普定县| 新民市| 垫江县| 金阳县| 鄂托克旗| 荥阳市| 陕西省| 泰兴市| 长葛市| 龙里县| 仁怀市| 岑巩县| 万源市| 师宗县| 云浮市| 柘城县|