找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Equadiff 82; Proceedings of the I H. W. Knobloch,Klaus Schmitt Conference proceedings 1983 Springer-Verlag Berlin Heidelberg 1983 Boundary

[復(fù)制鏈接]
樓主: whiplash
11#
發(fā)表于 2025-3-23 22:40:04 | 只看該作者
https://doi.org/10.1007/978-3-031-01859-6We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.
12#
發(fā)表于 2025-3-24 03:37:02 | 只看該作者
13#
發(fā)表于 2025-3-24 07:06:15 | 只看該作者
Periodic solutions of generalized Lienard equations with delay,We use classical Leray-Schauder techniques in order to derive the existence of periodic solutions of a generalized Liénard equation with delay.
14#
發(fā)表于 2025-3-24 12:55:07 | 只看該作者
Oscillation and nonoscillation properties for second order nonlinear differential equations,We survey oscillation and nonoscillation criteria for the generalized Emden-Fowler differential equation y″+q(x)y.=0, q>0, γ>0 with particular emphasis on the duality between the sublinear and superlinear cases.
15#
發(fā)表于 2025-3-24 17:07:33 | 只看該作者
16#
發(fā)表于 2025-3-24 22:45:40 | 只看該作者
https://doi.org/10.1007/978-3-658-10354-5f their results from the view of singularity theory and we will also indicate how this theory may be used to set up numerical methods for singular solutions such as bifurcation points or isolated points.
17#
發(fā)表于 2025-3-25 02:25:20 | 只看該作者
https://doi.org/10.1007/978-3-7091-7924-6nces on these equations together with the physical phenomena where they arise. In particular we consider a generalized Burgers‘ equation and we sketch a method for solution in series by using the theory of Sobolevskij and Tanabe. Then we study the KdV equation with nonuniformity terms and we describ
18#
發(fā)表于 2025-3-25 05:52:55 | 只看該作者
19#
發(fā)表于 2025-3-25 08:14:45 | 只看該作者
Equadiff 82978-3-540-38678-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
20#
發(fā)表于 2025-3-25 13:24:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥芬河市| 阜平县| 仁寿县| 华容县| 邢台县| 措美县| 峡江县| 弥渡县| 兴安盟| 图木舒克市| 青龙| 黑山县| 台江县| 农安县| 民县| 射阳县| 吐鲁番市| 巴里| 玉环县| 三门县| 乳山市| 西充县| 铜鼓县| 新郑市| 永平县| 庆城县| 犍为县| 大名县| 大连市| 红安县| 丰县| 曲沃县| 安陆市| 北票市| 江津市| 永靖县| 资中县| 庆城县| 枣阳市| 石家庄市| 郓城县|