找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Episodes in the Mathematics of Medieval Islam; J.L. Berggren Book 2016Latest edition Springer Science+Business Media New York 2016 Arabic

[復(fù)制鏈接]
樓主: 非決定性
11#
發(fā)表于 2025-3-23 13:16:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:23:07 | 只看該作者
Analog System Description and Simulation,Many ancient mathematical works contain problems requiring the discovery of an unknown quantity.
13#
發(fā)表于 2025-3-23 21:19:10 | 只看該作者
Low-Power Pipelined A/D ConversionNumber theory has a rich ancient tradition, much of it being found in Books VII–IX of Euclid’s .. Among the beautiful results in these three books, one finds a proof that there are infinitely many prime numbers, and that if 2.???1 is a prime then 2.(2.???1) is a . number, i.e., it is equal to the sum of its proper divisors.
14#
發(fā)表于 2025-3-24 01:37:25 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:31:11 | 只看該作者
17#
發(fā)表于 2025-3-24 14:11:26 | 只看該作者
Number Theory and Combinatorics in the Islamic World,Number theory has a rich ancient tradition, much of it being found in Books VII–IX of Euclid’s .. Among the beautiful results in these three books, one finds a proof that there are infinitely many prime numbers, and that if 2.???1 is a prime then 2.(2.???1) is a . number, i.e., it is equal to the sum of its proper divisors.
18#
發(fā)表于 2025-3-24 15:22:04 | 只看該作者
https://doi.org/10.1007/978-1-4939-3780-6Arabic mathematics; algebra in Islam; mathematics of Islam; mathematics of medieval Islam; combinatorics
19#
發(fā)表于 2025-3-24 19:38:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:08:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
烟台市| 鄂温| 宝应县| 托克逊县| 农安县| 宜城市| 连山| 乐至县| 延寿县| 洛阳市| 景泰县| 循化| 长沙县| 建平县| 托里县| 翁源县| 普兰店市| 丰都县| 松江区| 兰州市| 威海市| 克拉玛依市| 万州区| 弥渡县| 淮安市| 汉源县| 黔南| 长乐市| 大方县| 乌鲁木齐县| 乡城县| 泽州县| 民权县| 张家界市| 阳高县| 旺苍县| 滨海县| 凤山县| 昌宁县| 古浪县| 介休市|