找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Epidemics; Models and Data Usin Ottar N. Bj?rnstad Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: Hallucination
41#
發(fā)表于 2025-3-28 18:12:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:44:01 | 只看該作者
43#
發(fā)表于 2025-3-29 02:41:16 | 只看該作者
Akademisierung der Erzieherinnenausbildung?rogeneities from superspreading events during the 2003 SARS outbreak. Woolhouse et al. (.) suggested a 80/20 rule-of-thumb: for many infections a core of 20% of infected accounts for 80% of onwards transmission.
44#
發(fā)表于 2025-3-29 06:16:22 | 只看該作者
45#
發(fā)表于 2025-3-29 11:19:41 | 只看該作者
Spatial and Spatiotemporal Patternse the economic and public health burden because the resulting regionalized outbreaks can overwhelm logistical capabilities as was evident in the early part of the 2013–2014 West AfricanEbolaoutbreak and the 2020–2021SARS-CoV-2pandemic.
46#
發(fā)表于 2025-3-29 14:39:29 | 只看該作者
47#
發(fā)表于 2025-3-29 18:17:23 | 只看該作者
Parasitoidsmpler of how infectious disease processes in space and time generally lead to autocorrelated data that breach the classic statistical adage of “identically distributed, independent data” but for which a battery of modern methods can provide correct inference and additional insights.
48#
發(fā)表于 2025-3-29 20:35:00 | 只看該作者
SIRng epidemics and pandemics as well as several important time series methods for characterizing and understanding temporal recurrence patterns of infection. The last two chapters explore how ideas from dynamical systems theory can help explain several very curious aspects of the waxing and waning of infection through time.
49#
發(fā)表于 2025-3-30 03:49:52 | 只看該作者
50#
發(fā)表于 2025-3-30 06:56:55 | 只看該作者
Stochasticspublic health data, in contrast, tracks incidence—the number of new cases in any given time interval. We thus need to do something more than trying to match simulated prevalence with observed incidence. We therefore start with a toy example in which the simulated data actually represents prevalence.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳西县| 庆元县| 万安县| 西丰县| 渭南市| 武威市| 茶陵县| 双江| 平原县| 福海县| 张家港市| 柯坪县| 读书| 三河市| 七台河市| 胶南市| 徐闻县| 盐源县| 河池市| 玉林市| 宁陕县| 宁远县| 全南县| 临江市| 婺源县| 卢湾区| 九龙县| 永康市| 赤峰市| 西安市| 天台县| 荣成市| 集贤县| 霍城县| 桂林市| 梧州市| 湟中县| 南通市| 应城市| 和静县| 乌兰县|