找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ensembles in Machine Learning Applications; Oleg Okun,Giorgio Valentini,Matteo Re Book 2011 Springer Berlin Heidelberg 2011 Computational

[復(fù)制鏈接]
樓主: 復(fù)雜
31#
發(fā)表于 2025-3-26 21:03:57 | 只看該作者
On the Design of Low Redundancy Error-Correcting Output Codes, public UCI data sets and different multi-class Computer Vision problems show that the proposed methodology obtains comparable (even better) results than the state-of-the-art ECOC methodologies with far less number of dichotomizers.
32#
發(fā)表于 2025-3-27 02:07:17 | 只看該作者
33#
發(fā)表于 2025-3-27 07:33:22 | 只看該作者
34#
發(fā)表于 2025-3-27 11:34:40 | 只看該作者
On the Design of Low Redundancy Error-Correcting Output Codes,essed using an ensemble of classifiers . In this scope, the Error-Correcting Output Codes framework has demonstrated to be a powerful tool for combining classifiers. However, most of the state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of
35#
發(fā)表于 2025-3-27 15:47:50 | 只看該作者
Minimally-Sized Balanced Decomposition Schemes for Multi-class Classification,lass classification problem as a set of binary classification problems. Due to code redundancy ECOC schemes can significantly improve generalization performance on multi-class classification problems. However, they can face a computational complexity problem when the number of classes is large..In t
36#
發(fā)表于 2025-3-27 20:16:27 | 只看該作者
Bias-Variance Analysis of ECOC and Bagging Using Neural Nets,gating (Bagging) and Error Correcting Output Coding (ECOC) ensembles using a biasvariance framework; and make comparisons with single classifiers, while having Neural Networks (NNs) as base classifiers. As the performance of the ensembles depends on the individual base classifiers, it is important t
37#
發(fā)表于 2025-3-28 01:14:20 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:18 | 只看該作者
Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers,lgorithms cannot scale up to deal with high dimensional data, that is more than few hundred features. This chapter presents hybrid correlation and causal feature selection for ensemble classifiers to deal with this problem. Redundant features are removed by correlation-based feature selection and th
39#
發(fā)表于 2025-3-28 07:20:51 | 只看該作者
Learning Markov Blankets for Continuous or Discrete Networks via Feature Selection,ensemble masking measures can provide an approximate Markov Blanket. Consequently, an ensemble feature selection method can be used to learnMarkov Blankets for either discrete or continuous networks (without linear, Gaussian assumptions). We use masking measures for redundancy and statistical infere
40#
發(fā)表于 2025-3-28 11:55:12 | 只看該作者
Ensembles of Bayesian Network Classifiers Using Glaucoma Data and Expertise,tion of glaucoma, a major cause of blindness worldwide. We use visual field and retinal data to predict the early onset of glaucoma. In particular, the ability of BNs to deal with missing data allows us to select an optimal data-driven network by comparing supervised and semi-supervised models. An e
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翼城县| 中牟县| 胶州市| 桂阳县| 韶关市| 皋兰县| 武宁县| 泽普县| 大安市| 赣榆县| 诏安县| 图木舒克市| 海门市| 个旧市| 德江县| 闽清县| 正定县| 大埔县| 突泉县| 怀柔区| 德兴市| 玉门市| 东辽县| 金塔县| 天水市| 胶南市| 长武县| 齐齐哈尔市| 广南县| 祥云县| 本溪市| 监利县| 衡水市| 遂川县| 旬邑县| 黄冈市| 砚山县| 怀集县| 雷波县| 洛川县| 古交市|